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Abstract

In multisite experiments, we can quantify treatment effect variation with the cross-site
treatment effect variance. However, there is no standard method for estimating cross-site
treatment effect variance in multisite regression discontinuity designs (RDD). In this research, we
rectify this gap in the literature by developing and validating a method based on random effects
meta-analysis. We also evaluate two fixed intercepts/random coefficients (FIRC) models based on
prior RDD studies and use simulation to demonstrate their unsuitability. We then apply our
model to a high school exit exam policy in Massachusetts that required students who passed the
high school exit exam but were still determined to be nonproficient to complete an “Education
Proficiency Plan” (EPP). We find the EPP policy had a positive local average treatment effect on
whether students completed a math course their senior year, but that the treatment effect
variance was large enough in three cohorts for the treatment effect to have been negative in more
than a third of high schools.
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Introduction

In Massachusetts, students who score as “Need Improvement” but not “Proficient” on the

ELA and math high school exit exam, which students first take at the end of 10th grade, are

required to complete an “Education Proficiency Plan” (EPP) before they can graduate. This

policy is a classic set up for a regression discontinuity analysis. Students are assigned to

treatment (i.e., being required to complete an EPP) based on whether their value on a running

variable (i.e., 10th grade high school exit exam score) falls above or below a specific cut point

(i.e., scoring above or below the minimum proficiency score). For students who tend to score near

the cut-point measurement error in the running variable makes assignment into the EPP near

random (Imbens & Lemieux, 2008; Lee & Lemieux, 2010), and the causal effect of EPP can be

estimated by comparing the outcomes of students just below the cut point to students the

outcomes just above the cut point. In our case, we find that being required to complete an EPP

had an overall local average treatment effect of increasing the probability a student completes a

math course in their senior year of about 3 percentage.

However, estimating just the local average treatment effect does not provide a full picture of

the EPP policy’s effects. The EPP policy could have the same effect in all high schools, or the

effect could vary considerably across schools, with the effect being large in some and small or even

negative in others. Quantifying treatment effect variation is therefore important for understanding

the full range of expected policy impacts, where and with which populations a policy is most

effective, and how generalizable policy effects are outside the study sample (Angrist, Pathak, &

Walters, 2013; Raudenbush & Bloom, 2015; Tipton, 2014; Weiss, Bloom, & Brock, 2014).

One measure of treatment effect variation in multi-site studies is the cross-site treatment

effect variance. There are standard methods for estimating cross-site treatment effect variance in

multisite randomized experiments, but there are no such methods designed to be used in RDDs.

This is despite the fact that RDDs have all the same sources of treatment effect variation as

randomized experiments. In fact, the conditions under which people most often use RDDs are

precisely the conditions under which we see the most cross-site variance within random controlled
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trials (RCT): interventions which are only loosely specified (Weiss et al., 2017). RDD, a

quasi-experimental method, is most often used opportunistically to study policies where

interventions were naturally assigned using a cut-score on a running variable. Such natural

experiments generally have interventions that are less tightly controlled and specified than RCTs

that are pre-planned and implemented by researchers.

In the first part of this paper, we develop and evaluate a method for estimating cross-site

treatment effect variation based on random effects meta-analysis. We treat our multisite study as

a form of “planned meta-analysis” (Bloom, Raudenbush, Weiss, & Porter, 2017). In each site we

run a local linear regression model using only data from that site to estimate a site-level

treatment effect. These site-level treatment effects are then combined to get an average treatment

effect and a cross-site treatment effect variance using tools from random effects meta-analysis

(Higgins, Thompson, & Spiegelhalter, 2009).

We also evaluate two other methods based on analyses done in the only other studies we are

aware of to estimate the cross-site treatment effect variance in a multisite RDD: a study by

McEachin, Domina, and Penner (2020) on the effect of early algebra in California middle schools

and a study by Raudenbush, Reardon, and Nomi (2012) on statistical methods for multisite trials

that includes an evaluation of double dose algebra in Chicago schools. Both of these studies use a

fixed intercepts random coefficient (FIRC) model, where outcomes are modeled with a multi-level

model with a fixed unpooled intercept for each site and a site-level random effect coefficient on

treatment (Bloom et al., 2017). However, each of the two studies makes different choices in how

to model the running variables in the equation.

Coefficients in a regression framework can be modeled one of three ways: pooled, unpooled,

and partially pooled. A pooled estimate is a typical ordinary least squared coefficient, where all

data across sites is combined to estimate one coefficient value for all sites. An unpooled estimate

is where the coefficient is estimated only using data from each individual site and there is a

different estimate for each site. A partially pooled coefficient is modeled as a random effect, where

the coefficient is assumed to be normally distributed across the sites.
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McEachin et al. (2020) model the running variable with pooled coefficients on the running

variable and the treatment running variable interaction. The pooled coefficients for the running

variable terms simplifies the model but also can leave the model misspecified if there is cross-site

variation in these coefficients. Raudenbush et al. (2012) have a more complicated model with a

random effect on running variable term. Their model also has a quadratic running variable term

instead of a linear interaction between the treatment status and the running variable. However,

using a linear treatment running variable interaction is more in line with contemporary RDD

standards (Gelman & Imbens, 2019), and so we adapt the Raudenbush et al. (2012) model by

replacing the quadratic running variable term with a linear treatment running variable

interaction. We model the coefficient on the linear treatment running variable interaction as a

partially pooled random effect.

Neither McEachin et al. (2020) or Raudenbush et al. (2012) provide confidence intervals for

their cross-site treatment effect variance estimates. We evaluate three potential methods for

estimating confidence intervals in an RDD FIRC model: Wald standard errors, Q-statistics

inversion, and profiled confidence intervals. Using simulation, we demonstrate both that Wald

standard errors and Q-statistics inversion are problematic when used with the RDD FIRC model,

leaving profile confidence intervals as the most reasonable confidence intervals for cross-site

treatment effect variance in the FIRC models.

That being said, our evaluation of the different potential models for estimating cross-site

treatment effect variance in multi-site RDDs shows that FIRC models do not work well. The

RDD FIRC models frequently suffer from colinearity and have a “singular” fit, making the model

estimates unusable. The simplified FIRC model with pooled running variable coefficients

produces a singular fit less often, but has a large upward bias when there is cross-site variance in

the running variable coefficients. In contrast, the random effects meta-analysis model produces

reasonable estimates across a variety of conditions with the point estimate in the 95% confidence

interval approximately 95% of the time.

In the second part of the paper, we apply these methods to the EPP policy example. The
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EPP policy grants individual high schools across Massachusetts considerable latitude in

implementing EPPs for their students. High schools can require students to demonstrate

proficiency by taking a special proficiency exam, passing courses in the relevant area(s) in their

junior and senior year, or a combination of the two. The high school certifies final proficiency, and

the state does not require high schools to make students take the high school exit exam again.

Individual high school implementation decisions are particularly relevant for the math EPP.

Massachusetts does not impose ELA or math high school graduation requirements at the state

level, but in practice, all Massachusetts high schools require four years of ELA. However, there is

variation across Massachusetts high schools in how much math they require, with high schools

requiring anywhere between two and four years of math to graduate. With the ELA EPP, the

exam has no binding impact on a student’s coursework requirements because students are already

required to pass four years of ELA to graduate. However, with math, an EPP could increase the

number of math courses a student must complete because there is no baseline requirement of four

years of math to graduate.

We use our random effects meta-analysis RDD model to understand how high schools

implemented the EPP policy in practice. One goal of the policy was to increase the percentage of

high school seniors in Massachusetts who completed a math course their senior year. While this

worked on average, we find large cross-site treatment effect variance across high schools. We also

find that differences in high school graduation requirements are not enough to explain this

variance and that the variance across high schools that required four years of math is almost as

large as the variance across high schools that did not require four years of math. Therefore we

can conclude there were meaningful differences in program implementation across schools beyond

differences in course requirements.

Analytical Models

Multisite RDD studies generally estimate causal effects using local linear regression (Hahn,

Todd, & Van der Klaauw, 2001; Imbens & Lemieux, 2008; Gelman & Imbens, 2019). This local

linear regression model (LLR) for multisite RDDs frequently take the following form for
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observation i in site j:

Yij = αj + β1Tij + β2(Scoreij − Scorec) + β3Tij ∗ (Scoreij − Scorec) + εij

εij
iid∼ N [0, σ2

y ]

(1)

where Yij is the outcome of interest, αj is an unpooled site level intercept, Scoreij is the running

variable, Scorec is the treatment cut score and Tij is binary treatment indicator determined by

whether Scoreij is above/below Scorec. Generally, the model is estimated only using observations

where |Scoreij − Scorec| < h, where h is the model bandwidth.

In this model, the local average treatment effect is β1. β1 is a single fixed treatment effect

pooled across sites, which does not allow for the estimation of cross-site treatment effect variance.

The confidence interval for β1 is estimated using clustered robust errors clustered at the site level.

Our proposed method for estimating cross-site treatment effect variance treats the multisite

RDD as a random effects meta-analysis of small site-level RDD studies. In each site, a separate

regression model is estimated as follows:

Yij = β0j + β1jTij + β2j(Scoreij − Scorec) + β3jTij ∗ (Scoreij − Scorec) + εij

εij
iid∼ N [0, σ2

yj ]

(2)

Under this model the site specific variance covariance matrices of the vector of coefficients

β̂j would generally be estimated as:

V Cov(β̂j) = (X ′jXj)
−1σ̂j

2

σ̂2
j =

1

nj − 3− 1

∑
(Yij − Ŷij)2

(3)

where Xj is the data matrix of dependent variables for site j and nj is the total number of

observations in site j.
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However, estimating the variance covariance matrix separately for each site can lead to

imprecise standard error estimates, especially for small sites. Instead, we increase the precision of

the standard error estimates by modeling the coefficient variance covariance matrix using a

pooled estimate for residual variance as follows:

V Cov(β̂j) = (X ′jXj)
−1σ̂j

2

σ̂2
j =

1∑
nj

∑
(nj σ̂j

2)
(4)

Consistent with the meta-analysis literature (Higgins et al., 2009; Whitehead & Whitehead,

1991; DerSimonian & Laird, 1986), we estimate the overall average treatment effect as a precision

weighted average of the site-level treatment effects. This means we estimate the overall local

average treatment effect as follows:

β̂1 =

∑
β̂1jwj∑
wj

, ŜEβ1 =

√
1

(
∑
wj)

(5)

where the site level weights wj = 1

ŜE2
β1j

+σ̂2
β1

.

The cross-site treatment effect variance σ2
β1

is calculated using a methods of moments

estimator:

σ̂2
β1 = max(0,

Q− J − 1∑
ŜE−2

β1j
−

∑
ŜE−4

β1j∑
ŜE−2

β1j

)

Q =
∑

Wj(β̂1j −
∑
Wj β̂1j∑
Wj

)2, where Wj =
1

ŜE2
β1j

(6)

where ŜEβ1j is the estimated site-level standard error for β1j from Equation 4 and J is the total

number of sites.

The confidence interval for the cross-site treatment effect variance is estimated using
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Q-statistic inversion. In meta-analysis, the Q-statistic is defined as:

Q(τ2) =

J∑
j=1

(β̂1j −
∑
Wj β̂1j∑
Wj

)2

ŜE2
β1j

+ τ2
, where Wj =

1

ŜE2
β1j

(7)

The Q-statistic Q(τ2), is similar to the Q in the methods of moment estimator, but Q(τ2) includes

the treatment effect variance (τ2) in the denominator (Higgins et al., 2009). This Q-statistic has a

chi-squared distribution with J-1 degrees of freedom. Under the test-inversion procedure the

Q-statistic is estimated for a plausible range of τ2 values from 0 to some τ2
max. These Q values are

compared to χ2
J−1(α2 ) and χ2

J−1(1− α
2 ), where α is the level of the confidence interval. The α

confidence interval for σ2
β1

is all τ2 where Q(τ2) ≥ χ2
J−1(α2 ) and Q(τ2) ≤ χ2

J−1(1− α
2 ).

In addition to our proposed random effects meta-analysis model, we evaluate two different

variations of an RDD FIRC model. In both RDD FIRC models, the treatment effect is modeled

with a site-level random effect using a multi-level model. However, in the first FIRC model, both

running variable coefficients are pooled across sites, and in the second FIRC model, both running

variable coefficients are modeled as site-level random effects along with the treatment impacts.

FIRC One (restricted):

Level One - Observation:

Yij = αj + β1jTij + β2(Scoreij − Scorec) + β3Tij ∗ (Scoreij − Scorec) + εij

εij
iid∼ N(0, σ2

y)

Level Two - Site:

β1j = δ + e1j (8)

e1j
iid∼ N(0, σ2

β1)

FIRC Two (unrestricted):

Level One - Observation:

Yij = αj + β1jTij + β2j(Scoreij − Scorec) + β3jTij ∗ (Scoreij − Scorec) + εij

εij
iid∼ N(0, σ2

y) (9)

8



Level Two - Site:

β1j = δ + e1j

β2j = γ2 + e2j

β3j = γ3 + e3je1j

e2j

e3j

 ∼ N
0

0
0

,
 σ2

β1
σβ1β2 σβ1β3

σβ2β1 σ2
β2

σβ2β3
σβ3β1 σβ3β2 σ2

β3



Both of these models are estimated only using observations within a set bandwidth away from the

cut score, and in both cases, δ represents the local average treatment effect.

Neither McEachin et al. (2020) or Raudenbush et al. (2012) estimate a confidence interval

for their cross-site treatment effect variance estimate, so we test three possible methods for

obtaining confidence intervals: 1) Wald standard errors, 2) Q-statistic inversion, and 3) profiled

confidence intervals. Wald standard errors are known to be unreliable for variance parameters in

multi-level models and are particularly problematic when variances are close to zero; however, we

present them for evaluation purposes. Following (Bloom et al., 2017), the Q-statistic confidence

intervals are not estimated using the parameters from the multi-level model but an analogous

OLS regression model. Like Q-statistic inversion, the profiled confidence interval also uses test

inversion, although now it is the likelihood ratio test being inverted. Different potential cross-site

treatment effect variance estimates are plugged into the likelihood functions and the 95%

confidence interval is all values where the likelihood ratio test is not significant at the .05 level.

Simulation Specifications

We use simulations to compare how our analytical models perform under different empirical

conditions. LLR doesn’t allow for the estimation of cross-site treatment effect variance, but we do

compare our models to LLR in the case of the average treatment effect.

Under the potential outcomes framework, data for observation i in site j is generated as
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follows:

Y0ij = a0j + b0jScoreij + εij

Y1ij = Y0j + a1j + b1jScoreij

εij ∼ N(0, σ2
ε )

Scoreij = µScore + rj + πij

πij ∼ N(0, 1− ICCScore)

(10)

where Y0ij is the outcome absent treatment, Y1ij is the outcome with treatment, σ2
ε is the residual

variance of the outcome, rj is the site-level effect on the running variable, and ICCScore is the

inter-class correlation of the running variable. In this model Scorec is fixed at 0 and the overall

running variable distribution is constructed to have a standard deviation of one and a grand mean

of µScore.

Under this data generating process all coefficients are site specific. The residual error

variance, σ2
ε , is assumed to be fixed across sites and observations. Each site is also defined as

having nj observations and a site-level mean shift on the running variable of rj .

The site level parameters are generated as follows:

a0j ∼ N(µa0, σ
2
a0), b0j ∼ N(µb0, σ

2
b0), a1j ∼ N(µa1, σ

2
a1), b1j ∼ N(µb1, σ

2
b1)

rj ∼ N(0, ICCScore)

nj ∼ Pois(µn)

(11)

where µa0...µb1 are the coefficient means, σ2
a0...σ

2
b1 are the coefficient variances, and µn is the

average number of observations per site. All the model coefficients are assumed independent from

each other.

The data generating process above means that overall our simulation takes as input

parameters means and variances for each coefficient a0...b1, a residual variance value σ2
ε , a value

for the interclass correlation of the running variable ICCScore, and the average observations per

site µn. In addition, the total number of sites J , the bandwidth h, and a running variable grand
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mean µScore is specified for each simulation. In this model, µa1 is the true local average treatment

effect and σ2
a1 is the true cross-site treatment effect variance.

The baseline parameter values are based on the empirical data from Massachusetts. Across

all simulations we fix the average parameter values as: µa0 = .7, µb0 = .05, µa1 = .07, µb1 = .025.

We also fix the control mean standard deviation (σa0) to .3, the treatment effect standard

deviation (σa1) to .07, the residual error (σ2
ε ) to .4, the bandwidth (h) to 1, and the running

variable grand mean (µScore) to 1. Across simulations we vary the average observations per school

(µn) from 10 to 250 with a baseline value of 130, the total schools (J) from 10 to 300 with a

baseline value of 150, the standard deviation of the control running variable coefficient (σb0) from

0 to .3 with a baseline value of .05, the standard deviation of the treatment running variable

coefficient (σb1) from 0 to .3 with a baseline value of .025, and the running variable ICC

(ICCScore) from 0 to .9 with a baseline value of .2. Therefore we run a total of 46 simulations

with each simulation parameter besides the parameter being varied fixed at its baseline value.

Simulation Results

Estimate of the Treatment Effect Mean

The LLR model, the random effects meta-analysis RDD, and both the RDD FIRC models

produce reasonable estimates for the local average treatment effect. Using the benchmark

parameter values, we see that all three models have coverage rates (i.e. the proportion of

simulations where the model estimate is in the confidence interval) close to 95% across site sizes

and the total number of sites (Figure 1). The only two exceptions are for small sample sizes.

When there are only ten sites, the LLR model has a coverage rate of 91%, which is worse than the

other two models, and when there is only an average of ten observations per site, the two FIRC

models have coverage rates of approximately 91%. For all four models, the extent to which the

coverage is below 95% is driven by small underestimates of the standard errors and not bias in

the estimate. Overall, these results provide reassuring evidence that the model-misspecification in

the LLR model typically used by researchers does not interfere with the estimate of the local
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average treatment effect.

(a) (b)

Figure 1: The coverage rate of the local average treatment effect estimates across the local linear regression (LLR), the random
effects meta-analysis (Meta), fixed intercepts random coefficients with pooled running variable coefficients (FIRC One), and
fixed intercepts random coefficients with random running variable coefficients (FIRC Two) regression discontinuity models. In
the left panel, the average number of observations per site is fixed at 130, and the total number of sites is varied. In the right
panel, the total number of sites is fixed at 150, and the average number of observations is varied. In both panels, the dotted
line is at the baseline parameter values of 150 total sites (left) and 130 average observations per site (right).

Both FIRC Models Run Into Estimation Problems

Both the FIRC models used in prior research run into a range of problems in our

simulations. In general, multi-level models are data intensive and will not run properly without

enough clusters or if the clusters are not large enough. Sample size requirements are even larger

in FIRC models, which soak up a significant amount of the model variance with the site-level

fixed intercepts. The RDD model only uses data near the cutoff, which only further increases the

required amount of data. Therefore the RDD FIRC models frequently fail to converge properly

(Figure 2).

The convergence problems are worse for the FIRC model two, because it requires more data

to fit the running variable coefficients as random effects. Even when the sample size is increased

to 300 total schools the FIRC Two model fails to converge 70% of the time and when the average

site size is 250 observations it still fails to converge 63% of the time. Convergence does improve for
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the FIRC One model as the sample size increases. Once the total number of sites reaches 250 or

the average site size reaches 150 the model fails to converge less than 10% of the time. However,

when the sample is smaller, convergence also presents a large problem for the FIRC One model.

(a) (b)

Figure 2: The rate at which the FIRC models produce a singular estimate of the treatment effect standard deviation. In the
left panel, the average number of observations per site is fixed at 130, and the total number of sites is varied. In the right panel,
the total number of sites is fixed at 150, and the average number of observations is varied. In both panels, the dotted line is at
the baseline parameter values of 150 total sites (left) and 130 average observations per site (right).

The FIRC One model’s more consistent convergence comes at a cost. The pooled estimates

of the running variable coefficients make the model misspecified. This modeling treats the running

variable coefficients as though their cross-site variance is zero. If there is significant cross-site

variance in the running variable coefficients, the model interprets it as variance in the cross-site

treatment effect, and the cross-site treatment effect variance estimate becomes biased (Figure 3).
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(a) (b)

Figure 3: The mean bias in the cross-site treatment standard deviation estimates for the fixed intercepts random coefficients with
pooled running variable coefficients (FIRC One), fixed intercepts random coefficients with random running variable coefficients
(FIRC Two), and random effects meta-analysis (Meta), regression discontinuity models. Both FIRC models exclude the
instances of singular fit. In the left panel, the standard deviation of b1 is fixed at .05, and b0 is varied. In the right panel the
standard deviation of b0 is fixed at .05, and b1 is varied. In both panels, the dotted line is at the baseline parameter value of
.05

Neither the Wald standard errors nor the Q-statistic inversion method work well for

calculating the confidence intervals of the cross-site treatment effect standard deviation estimates

from the FIRC models. Figure 4 shows that the Wald standard errors frequently have confidence

intervals that go below zero, which is inaccurate because standard deviation values can not be

negative. Estimating confidence intervals using Q-statistic inversion has a different problem.

Recall that Q-statistic inversion uses a modified version of the FIRC model estimated using OLS

and not a multi-level model. In the case of the FIRC RDD model, using this new OLS model

creates a situation where the actual parameter estimate is frequently not in the confidence

interval (Figure 5). This problem occurs regardless of whether instances where the model has a

singular fit are including or excluded. Given these problems with Wald standard error and the

Q-statistic inversion method, we use the profile method for getting confidence intervals for the

FIRC models in the rest of this paper.
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(a) (b)

Figure 4: The rate at which the lower limit of the Wald confidence interval goes below zero for the two FIRC models. In the
left panel, the average number of observations per site is fixed at 130, and the total number of sites is varied. In the right panel,
the total number of sites is fixed at 150, and the average number of observations is varied. In both panels, the dotted line is at
the baseline parameter values of 150 total sites (left) and 130 average observations per site (right).

(a) (b)

Figure 5: The rate at which the FIRC One model treatment effect standard deviation estimate is not in the confidence intervals
obtained from Q-statistic inversion. Results from the FIRC Two model are not included for clarity of presentation. In the left
panel, the average number of observations per site is fixed at 130, and the total number of sites is varied. In the right panel,
the total number of sites is fixed at 150, and the average number of observations is varied. In both panels, the dotted line is at
the baseline parameter values of 150 total sites (left) and 130 average observations per site (right)
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Evaluating The Random Effects Meta-Analysis Model

Our proposed random effects meta-analysis model does not suffer from the same problems

as the FIRC model. Unlike the FIRC One model, cross-site variance in the running variable

coefficients does not induce bias in the cross-site treatment effect estimate (Figure 3). In Figure 6,

we present the mean bias for the three model estimates across a range of sample sizes using the

baseline parameter values. There is a small amount of downward bias in the parameter estimates

in all three models, including the random effects meta-analysis model. However, when the total

number of sites is great than ten or the average number of observations is greater than 50, the

random effects meta-analysis model has less bias than the FIRC Two model. The random effects

meta-analysis also has less bias than the FIRC One model as long as the total number of sites is

at least 100. The random effects meta-analysis model has less bias than the FIRC One model for

most of the site sizes we tested, however as the average site size gets very big, the FIRC One

model has less bias. This is because the downward bias from the multi-level model is canceled out

by the upward bias from the model misspecification.

(a) (b)

Figure 6: The mean bias in the cross-site treatment standard deviation estimates across the random effects meta-analysis
(Meta), fixed intercepts random coefficients with pooled running variable coefficients (FIRC One), and fixed intercepts random
coefficients with random running variable coefficients (FIRC Two) regression discontinuity models. Both FIRC models exclude
the instances of singular fit. In the left panel, the average number of observations per site is fixed at 130, and the total number
of sites is varied. In the right panel, the total number of sites is fixed at 150, and the average number of observations is varied.
In both panels, the dotted line is at the baseline parameter values of 150 total sites (left) and 130 average observations per site
(right).
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Despite the small amount of bias in the random effects meta-analysis estimates of the

cross-site treatment effect standard deviation, the bias is well within the confidence interval and

does not impact the coverage rate. The random-effects meta-analysis estimate’s coverage rate is

about 95% across sample sizes, which is not true for the FIRC models (Figure 7). The FIRC Two

model only has a coverage rate near 95% when the sample sizes are small, and therefore when the

model is least likely to run successfully. The FIRC One model coverage is closer to 95%, but when

there are 200 total sites, the FIRC One coverage is only 84% and continues to drop as total sites

increases.

(a)

Figure 7: The coverage rate of the cross-site treatment standard deviation confidence intervals for the random effects meta-
analysis (Meta), fixed intercepts random coefficients with pooled running variable coefficients (FIRC One), and fixed intercepts
random coefficients with random running variable coefficients (FIRC Two) regression discontinuity models. Both FIRC models
exclude the instances of singular fit and use the profile method for obtaining confidence intervals. In the left panel, the average
number of observations per site is fixed at 130, and the total number of sites is varied. In the right panel, the total number
of sites is fixed at 150, and the average number of observations is varied. In both panels, the dotted line is at the baseline
parameter values of 150 total sites (left) and 130 average observations per site (right).

The mean bias and coverage results remain similar when we vary the ICC of the running

variable instead of the sample size (Figure 8). The mean bias in random effects meta-analysis

estimate of the cross-site treatment effect standard deviation is small, and the coverage of the

confidence interval is close to 95% across ICC values. This is also mostly true for the FIRC One

model, except that the coverage is low for small ICC values. However, the mean bias in the FIRC

Two model estimate of the cross-site treatment effect standard deviation is affected by increasing
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the ICC and get much worse for higher ICC values.

(a)

Figure 8: The accuracy of the cross-site treatment standard deviation estimates for the fixed intercepts random coefficients with
pooled running variable coefficients (FIRC One), fixed intercepts random coefficients with random running variable coefficients
(FIRC Two), and random effects meta-analysis (Meta), regression discontinuity models. Both FIRC models exclude the
instances of singular fit and use the profile method for obtaining confidence intervals. The right panel contains the mean bias
in the estimate as the running variable ICC is varied, and the left panel contains the coverage rate of the confidence intervals
as the ICC is varied.

There is a metric by which the meta-analysis model consistently performs worse than the

FIRC models. The confidence intervals for the meta-analysis model are longer than the

confidence intervals for the FIRC model (Figure 9). We argue that this does not justify using

either of the FIRC models because of the other demonstrated problems with those models.

However, unlike bias or coverage, interval length is a metric that can be assessed ex-post when the

model is being used in practice on non-simulated data. This means a researcher trying to decide

between models might reasonably conclude one of the FIRC models is better if they were not

aware of these FIRC models’ other problems.
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(a) (b)

Figure 9: The length of the confidence interval of the cross-site treatment standard deviation confidence intervals for the random
effects meta-analysis (Meta), fixed intercepts random coefficients with pooled running variable coefficients (FIRC One), and
fixed intercepts random coefficients with random running variable coefficients (FIRC Two) regression discontinuity models.
Both FIRC models exclude the instances of singular fit and use the profile method for obtaining confidence intervals. In the left
panel, the average number of observations per site is fixed at 130, and the total number of sites is varied. In the right panel,
the total number of sites is fixed at 150, and the average number of observations is varied. In both panels, the dotted line is at
the baseline parameter values of 150 total sites (left) and 130 average observations per site (right).

Massachusetts Education Proficiency Plan Example

Background

For the last 15 years, students in Massachusetts have been required to pass the 10th grade

MCAS exams in English Language Arts (ELA) and Mathematics in order to graduate. Students

pass the MCAS if they achieve at least the minimum score to be designated “Needs

Improvement”. In 2006, the law in Massachusetts was changed and, starting with the 2010

graduating cohort, students who scored high enough in ELA or Math to be designated as “Needs

Improvement” but not high enough to be “Proficient” now must complete an Education

Proficiency Plan (EPP) in their nonproficient subject.

The EPP policy was established by statute at the state level but is implemented by

individual high schools. High schools across Massachusetts have considerable latitude in how they

implement EPPs for their students. High schools can require students to demonstrate proficiency
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by taking a special proficiency exam, passing courses in the relevant area(s) in their junior and

senior year, or a combination of the two. In the end, final proficiency is certified locally by a

student’s own principal. High schools have the most latitude in how math EPPs are implemented.

Massachusetts has no state-wide rule regarding how much math and ELA high schools must

require for graduation. In practice, however, all Massachusetts high schools require four years of

ELA to graduate, but high schools range from requiring 2 to 4 years of math to graduate.

The EPP policy’s adoption was part of a larger push from the Massachusetts Board of

Elementary and Secondary Education to increase the number of high school students who

completed a math course in their senior year. Therefore, one relevant question about the EPP is

whether students who were required to complete a math EPP were more likely to complete a

math course their senior year. We answer this question using an RDD, with the raw 10th grade

math MCAS score as the running variable and whether a student completes a math course two

years after the MCAS exam as the outcome variables. Massachusetts started collecting course

taking data in 2011. For each graduating cohort from 2011 to 2016, we separately estimate the

effect of being required to complete a math EPP on the probability of completing a math course

two years after taking the MCAS, which we use as a proxy for completing a math class in a

student’s senior year.

When thinking about the EPP policy, the average treatment effect is not the only quantity

of interest. Given that EPPs were administered at the high school level, it is important to

understand how much between high school variation there was in the treatment effect. The state

of Massachusetts is not only concerned with how the EPP policy affects the average student but

the whole distribution of effects. Even if a policy helps students on average, it is of policy interest

to know whether it also harms a substantial number of students. Understanding treatment

variation also provides information on how to target implementation support. If the treatment

effect variance is low, it makes sense to target supports broadly, and if the treatment effect

variance is high, it makes sense to focus supports on the schools where the policy is working

poorly. In this example, we, therefore, also estimate the treatment effect variance across high

schools. In addition to the main analysis, we also estimate treatment effects and treatment effect
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standard deviations separately for schools that required four years of math and for schools that

required less than four years of math.

Results

Students required to complete a math EPP were more likely to complete a math class their

senior year than students who were not required to complete a math EPP (Figure 10). Students

in the 2011 cohort bound by the math EPP were seven percentage points more likely to complete

a math class their senior year than those not bound by the EPP. We see that the math EPP’s

effect declined over time and that by the 2016 cohort, students required to complete the EPP

were only three percentage points more likely to two years after taking the MCAS.

The math EPP policy corresponded with other policies intended to increase the number of

high schools that required four years of math to graduate and, ultimately, the number of high

school seniors who took and passed math classes. One reason we see the effect of the math EPP

declining across cohorts is more high schools required four years of math to graduate, and so

students not bound by the math EPP were also required to take math their senior year. Overall

the baseline percentage of students completing math classes their senior year was also increasing

across these cohorts.
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Figure 10: The local average treatment effect of the math Education Proficiency Plans on the probability of completing a math
course senior year across cohorts.

When we split the sample by whether a high school required four years of math to graduate

high school, the EPP effect is more consistent across cohorts (Figure 11). In high schools that

require less than four years of math, the EPP effect goes from about seven percentage points in

the 2011 cohort to about five percentage points in the 2016 cohort. However, the estimates get

increasingly noisy over time as the sample of schools that do not require four years of math gets

smaller. In high schools that require four years of math, the EPP effect is about six percentage

points in the 2011 cohort, but for all the other cohorts, it is consistently near zero and not

statistically significant.
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(a) High Schools Requiring ≤ 4 Years of Math to Graduate (b) High Schools Requiring 4 Years of Math to Graduate

Figure 11: The local average treatment effect of the math Education Proficiency Plans on the probability of completing a math
course senior year across cohorts by whether the high school requires four years of math to graduate.

Finally, the model choice does not significantly affect our estimates of the average treatment

effect. Across cohorts and samples, all four models produce similar average treatment effect point

estimates and confidence intervals. As with the simulations, the average treatment effect estimate

is robust to different assumptions about pooling the treatment coefficient or the running variable

coefficients. Also consistent with the simulations, the standard local linear model that is generally

used to estimate average treatment effects in multisite RDD’s doesn’t produce different estimates

than the other models.

While the math EPP’s average effect fell across cohorts, there is no consistent pattern in

the cross-high school treatment effect variance. In the 2012, 2013, and 2015 cohorts, we can not

reject the null hypothesis that cross-high school treatment effect standard deviation is zero, and

in the 2011, 2014, and 2016 cohorts, we can reject the null hypothesis. Across cohorts, the

standard deviation point estimate bounces between 10 percentage points for the 2014 cohort and

four percentage points for the 2013 cohort (Figure 12). If we assume that the treatment effect is

normally distributed across schools, then this amount of cross-high school variation implies that

for the 2011, 2014, and 2016 cohorts in many Massachusetts high schools, the math EPP had the

opposite of the desired effect and reduced the likelihood that a student completed a math class
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their senior year. These results could be driven by either variation in the treatment

implementation or in the control group behavior. However since non-EPP students were more

consistently taking math their senior year over this time period, these results imply that the EPP

policy implementation was not getting more consistent across high schools as the policy got older.

Figure 12: The cross-high school standard deviation of the local average treatment effect of the math Education Proficiency
Plans on the probability of completing a math course senior year across cohorts.

RDD papers often capture treatment variation by looking at treatment effect heterogeneity

by observable characteristics, as in our analysis in Figure 11. However, by estimating the cross-site

treatment effect standard deviation, we can show that high school graduation requirements

explain only a little of the variation (Figure 13). We can see this in two ways. First, there is still

significant variation within each group of schools. For schools that do not require four years of

math, the cross-site standard deviation is statistically significant in three cohorts, and for schools

that do require four years of math, the cross-site standard deviation is statistically significant in

two cohorts. Therefore the overall cross-site treatment effect variation is not fully explained by

differences in the treatment effect across the two groups of high schools. Second, because there is

still treatment effect variance in the schools requiring four years of math, we can see that the

graduation requirements are not the only thing driving treatment effect variation. Since even

within schools where the EPP should not be a binding constraint on students’ senior year math
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coursework decisions, we see variation in the EPP effect. Overall, we can therefore see the value

of quantifying the variance on top of just estimating heterogeneity by observable characteristics.

(a) High Schools Requiring ≤ 4 Years of Math to Graduate (b) High Schools Requiring 4 Years of Math to Graduate

Figure 13: The cross-site standard deviation of the local average treatment effect of the Education Proficiency Plans on the
probability of completing a math course senior year across cohorts by whether the high school requires four years of math to
graduate.

The EPP example also highlights the concern with the FIRC models seen in the

simulations. The FIRC Two model provided a singular fit in all eighteen of our models and so is

not picture in the figures. The FIRC One model produced a non-singular fit in only half of the

models we ran. The FIRC model confidence intervals are also tighter. A reasonable researcher

might look at the treatment effect standard deviation estimates from these two models and pick

the FIRC One model. However, the FIRC One model estimates of the cross-site standard

deviation are lower than the random effects meta-analysis estimates. Consistent with Figure 6, we

should expect this because the FIRC One estimates are more biased than meta-analysis estimates

and are worse estimates of the cross-site treatment effect standard deviation. Therefore, the FIRC

One model serves as an attractive nuisance to researchers, which they should be wary of.

Conclusion

Understanding treatment effect variation is an important part of policy evaluation. Within
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RCTs, there are increasingly standard methods for estimating treatment effect variation. In this

paper, we show that adapting these methods to the RDD setting is complicated, and methods

that work in the context of RCTs do not work with RDDs. We develop and evaluate a method for

estimating cross-site treatment effect variance within an RDD based in meta-analysis. We also

evaluate and expand two FIRC models used in prior research. We demonstrate the FIRC models

work poorly in the RDD context, but that our random effects meta-analysis model performs well

across various conditions.

We then apply these methods for estimating cross-site treatment effect variation to a

practical policy problem. We evaluate the effect of Massachusett’s Education Proficiency Plans on

senior year math completion rates. We find that the Education Proficiency Plans did increase

senior year math completion rates, but we also find that there was substantial variation across

high schools in this effect. This implies an opportunity for the state to improve the policy’s

effectiveness by targeting schools where the policy is less effective with increased implementation

supports.
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