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Trials (RCTs) in education. We make use of a unique feature of administrative 
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we analyse. We find that the typical magnitude of attrition bias is 0.015𝜎, with 

no estimate greater than 0.034𝜎. This suggests that, in practice, the risk of 

attrition bias is limited. However, this risk should not be ignored as we find 

some evidence against the common ‘Missing At Random’ assumption. 
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Section 1: Introduction and background  

Attrition has been described as “the Achilles Heel of the randomized experiment” (Shadish et al., 1998 

p.3). Attrition looms as a threat because it can undermine group equivalence, eroding the 

methodological strength at the heart of randomized evaluations. In short, attrition can cause bias. 

Attrition bias is the focus of this paper. We define attrition bias as the difference between the expected 

Average Treatment Effect (ATE) estimate of the final analysis sample, and the ATE of the 

randomization sample. Our main goal is to quantify and explore the nature of attrition bias in practice. 

We focus on the context of education research, a field which has seen a large increase in the number of 

randomized experiments over the past two decades (Connolly et al., 2018).  

The threat of attrition bias plays a significant role in assessing the quality of education evaluations. The 

What Works Clearinghouse (WWC) and the Education Endowment Foundation (EEF) – organisations 

responsible for setting evidence standards in the US and the UK – both have threshold rates of attrition 

(EEF, 2014; WWC, 2017). Beyond these thresholds, studies officially lose credibility. In the case of 

the EEF, for example, if attrition is greater than 50% then the results of the evaluation are largely 

disregarded.  

Despite the awareness of attrition as a threat to the quality of education research, remarkably little 

scholarship has focussed on quantifying the magnitude of attrition bias (Dong & Lipsey, 2011). The 

reason is simple: estimating attrition bias requires outcome information from pupils who, by definition, 

are no longer participating in research.  

In response to this fundamental empirical challenge, existing literature has largely focussed on 

simulation studies. These studies demonstrate scenarios for which attrition bias is larger than the typical 

effect sizes in education interventions (Dong & Lipsey, 2011; Lewis, 2013; Lortie-Forgues & Inglis, 

2019; WWC, 2014). Equally, it is well-known that if attrition is unrelated to either treatment status or 

outcomes, then randomized experiments remain unbiased regardless of the level of attrition (Little & 

Rubin, 2019). 

Whilst theory and simulation studies illustrate the potential for attrition bias to cause problems, they 

provide practitioners with limited guidance about the risk of attrition bias in practice. Deke and Chiang 

(2017) take the first step toward providing such guidance. They attempt to sidestep the fundamental 

challenge of estimating attrition bias by analysing pre-test academic achievement as proxies for post-

test outcomes. Pre-tests are often completed by pupils who stay in the evaluation (responders) as well 

as those who ultimately drop out (attriters). Using pre-tests, Deke and Chiang estimate attrition bias for 

four experiments, in each case comparing the estimated Sample Average Treatment Effect (SATE) of 

the whole sample to the estimated SATE of responders. 

While Deke and Chiang (2017) represents an important step forward, it has several limitations. First 

and foremost, attrition may be shaped by events that happen after randomization. For example, during 

the course of an evaluation, a school may experience a change of leadership. If the new leader decides 

that implementing a research intervention is a distraction, they may drop out of the study. The resulting 

attrition could lead to bias if the leadership change coincides with, or causes, a decline in academic 

attainment. This bias would not be captured in an analysis that used a pre-test as a proxy for post-test 

outcomes. Second, analysing attrition bias using pre-tests makes it difficult to know whether attrition 

bias is problematic conditional on predictive covariates as the pre-test – by far the most predictive 

covariate – is being used as the outcome. As Deke and Chiang note “after conditioning on the pre-test, 

the residual difference in the post-test between respondents and nonrespondents could be completely 

different from the observed pre-test difference” (p139). Finally, the study only looked at four 

interventions. This makes it difficult to describe the distribution of attrition bias across studies, and to 

estimate the typical value of attrition bias. The relative lack of cases also makes it hard to analyse some 

of the factors that might moderate attrition bias. 

We avoid these limitations by utilizing a unique feature of English administrative school data. 

Specifically, we make use of an archive of Randomized Controlled Trials (RCTs) that can be linked to 
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a census of pupil and school information. Ten of the RCTs in the archive met two crucial conditions: a) 

the original outcomes were subject to attrition; b) after the intervention, students had sat a compulsory 

achievement test. For the 10 RCTs in our sample, we were able to analyse post-test academic 

achievement outcomes for students who exited the original randomized experiments. By comparing 

these outcomes to the equivalent outcomes of responder students, we can estimate attrition bias. 

Attrition rates in our sample of 10 RCTs were typical of education experiments. At the student level, 

the mean rate of attrition across the 10 studies was 19 percent. A broader analysis of education RCTs 

in the UK found mean student-level attrition of 19 percent (n=79 experiments, see Demack et al., 

forthcoming). 

Our paper makes four contributions. First, we present novel estimates of attrition bias for 10 education 

RCTs, spanning 22 outcomes. This advances empirical scholarship by providing estimates of bias based 

on post-test outcomes. Using techniques from meta-analysis, we then estimate the typical magnitude of 

attrition bias across studies and outcomes. 

Second, we present a framework for decomposing attrition bias. This illustrates that attrition bias is a 

function of four components: the rate of attrition in each treatment arm, and the association between 

attrition and outcomes in each arm. We quantify the magnitude of these components across 22 study-

outcome pairs, and report parameter values that define how pernicious attrition mechanisms tend to be 

in practice. 

Third, we examine the plausibility of the “Missing At Random” (MAR) assumption. In most real-world 

situations, this assumption is untestable. In our context, however, we are able to test MAR at the study-

outcome level, as well as providing a global test across all the outcomes in our sample of evaluations. 

We find evidence against MAR.  

Finally, we provide two substantive recommendations for researchers in the field: incorporate 

uncertainty from attrition bias, and check whether conclusions are sensitive to ‘worst-observed case’ 

attrition mechanisms. For both recommendations we offer simple techniques that can be used in applied 

research. We illustrate these techniques with the REACH evaluation, an RCT of a reading intervention 

in England (Sibieta, 2016). 

The paper is organized as follows. Section 2 defines and decomposes attrition bias. Section 3 describes 

the data and the interventions that underpin our analyses. Section 4 illustrates our approach to estimating 

attrition bias and presents headline estimates across 22 study-outcome pairs. In section 5 we test the 

MAR assumption and examine some potential predictors of pernicious attrition mechanisms. Section 6 

provides researchers with recommendations about dealing with attrition bias, and section 7 concludes. 

Section 2: Conceptual Framework 

2.1 Overview 

Consider an evaluation with n students in the sample at randomisation, with 𝑇𝑖 as the randomly assigned 

binary treatment indicator for student 𝑖. We use potential outcomes notation in which 𝑌𝑖(𝑡) denotes the 

post-treatment outcome when 𝑇𝑖 = 𝑡. In our analyses, outcomes are standardized achievement tests 

across a range of domains including maths, reading, and science. The estimand of interest is the finite-

sample Sample Average Treatment Effect. This is denoted by 𝜏𝐹𝑈𝐿𝐿 = 𝐸[𝑌(1) − 𝑌(0)]. The ‘full’ 

subscript indicates that we are interested in the average treatment effect for all the units in our original 

sample, before any attrition. The “𝐸[]”denotes the simple average across the n units in the sample.  

Estimates of 𝜏𝐹𝑈𝐿𝐿 can be biased by non-random attrition. To formalize this, let 𝐴𝑖(𝑡) be a binary 

indicator of attrition under treatment assignment 𝑡. For example, 𝐴𝑖(1) = 1 describes a unit who left 

the evaluation after being assigned to treatment (a ‘Treatment Attriter’). Figure 1 summarizes our setup. 

Our original treatment and control groups are directly comparable (up to imbalance caused by 

randomness in treatment assignment). Our evaluation sample consists of the Treatment Responders and 

the Control Responders.  



4 
 

Figure 1: Conceptual overview 

 

There are two concerns with an analysis of the evaluation sample. First, the Treatment Responders and 

Control Responders may not be directly comparable to each other if different types of students tended 

to attrit when exposed to treatment as compared to control. Consider an extreme case in which all 

struggling schools drop out of a particularly time-intensive treatment arm. The final treatment group 

would have the remaining high performers, and the control group a mix of both. This could bias impact 

estimates due to this systematic imbalance between the two groups. We call this “differential attrition 

bias”. 

There is a second, more subtle source of attrition bias. Even if we generate a correct impact estimate 

for our final evaluation sample, it may not generalize to the full sample. Consider the case where those 

most sensitive to treatment also are least likely to drop out of the study regardless of their assignment. 

In this case, even in the absence of differential attrition bias, our impact estimates would be 

systematically too high. We call this “generalizability attrition bias”. 

Attrition bias, as we define it, encompasses both differential and generalizability attrition bias. To state 

our definition more formally, let 𝜏̃𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 be the expected contrast between the ‘treated responders’ 

and ‘control responders’: 

𝜏̃𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 = τ̃R = 𝐸[𝑌(1)|𝐴(1) = 0] − 𝐸[𝑌(0)|𝐴(0) = 0]   (1) 

The above is the average treatment outcome of all students who respond under treatment minus the 

average control outcome of all students who respond under control. This is not a causal effect estimand: 

while these two groups may share some portion of students, they do not necessarily share all of them, 

so our difference is not a well-defined treatment vs. control contrast on the same units. 𝜏̃𝑅 is, however, 

what is being estimated by contrasting the outcomes of treated and control units in the responder sample. 

This is almost always the contrast that applied researchers examine. 

Using the above, we define “attrition bias” as the difference between the preferred estimand (𝜏𝐹𝑈𝐿𝐿) 
and the typical focus of applied researchers (𝜏̃𝑅): 

𝛽 = 𝜏𝐹𝑢𝑙𝑙 − 𝜏̃𝑅     (2) 

To better understand attrition bias, we decompose 𝛽 into four elements: the rate of attrition in each 

treatment arm (𝑃𝑇,𝑃𝐶) and the extent to which the attrition mechanism is associated with outcomes, in 

each arm (Δ𝑇 , Δ𝐶). The next sub-section defines these terms and illustrates the decomposition. 

2.2 Bias decomposition 

We can write attrition bias in terms of how attrition impacts the estimated average outcome on the 

treatment side and the control side. Let 𝛽𝑇 be the attrition bias in the treatment arm: 

𝛽𝑇 = 𝐸[𝑌(1)] − 𝐸[𝑌(1)|𝐴(1) = 0]   (3) 

Evaluation 
Sample

Treatment
=1

Control
=0

Treatment 
Attriters
=1, A(1)=1

Treatment 
Responders

=1, A(1)=0

Control 
Responders

=1, A(1)=1

Control 
Attriters
=1, A(0)=1
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𝛽𝑇 represents the gap, in terms of average outcome under treatment, between the full sample and the 

‘treatment responders’.  

Defining 𝑃𝑇 = 𝑃(𝐴(1) = 1), and using the law of total probability, we have: 

𝛽𝑇 = 𝑃𝑇 ⋅ 𝐸[𝑌(1)|𝐴(1) = 1] + (1 − 𝑃𝑇) ⋅ 𝐸[𝑌(1)|𝐴(1) = 0] − 𝐸[𝑌(1)|𝐴(1) = 0] 

= 𝑃𝑇 ⋅ (𝐸[𝑌(1)|𝐴(1) = 1] − 𝐸[𝑌(1)|𝐴(1) = 0])  (4) 

Next, let Δ𝑇 be the difference in expected outcomes between ‘treatment attriters’ and ‘treatment 

responders’: 

Δ𝑇 =  𝐸[𝑌(1)|𝐴(1) = 1] − 𝐸[𝑌(1)|𝐴(1) = 0]   (5) 

Combining (5) and (6) we have: 

𝛽𝑇 = 𝑃𝑇Δ𝑇 

Following the same logic on the control side, where 𝑃𝐶 = 𝑃(𝐴(0) = 1), we have: 

𝛽𝐶 = 𝑃𝐶 ⋅ (𝐸[𝑌(0)|𝐴(0) = 1] − 𝐸[𝑌(0)|𝐴(0) = 0]) 

= 𝑃𝐶Δ𝐶 

Returning to our original definition of attrition bias (2), we have: 

       𝛽 = 𝜏𝐹𝑈𝐿𝐿 − 𝜏̃𝑅                                                                                                                    

= (𝐸[𝑌(1)] − 𝐸[𝑌(0)]) − (𝐸[𝑌(1)|𝐴(1) = 0] − 𝐸[𝑌(0)|𝐴(0) = 0])          

= (𝐸[𝑌(1)] −  𝐸[𝑌(1)|𝐴(1) = 0]) − (𝐸[𝑌(0)] − 𝐸[𝑌(0)|𝐴(0) = 0]) 

= 𝛽𝑇 − 𝛽𝐶                   

= 𝑃𝑇Δ𝑇 − 𝑃𝐶Δ𝐶    (6) 

Equation (6) shows attrition bias can be conceptualized as a function of four parameters: 𝑃𝑇 , 𝑃𝐶 , Δ𝑇, and 

Δ𝐶.  

2.3 Covariate adjustment 

Our parameter 𝛽 captures attrition bias if we make no attempt to account for attrition using measured 

pre-treatment covariates (𝑋). We next discuss the extent to which covariate adjustment can help reduce 

attrition bias. Covariate adjustment is used in RCTs to account for chance imbalance of covariates that 

are predictive of outcomes. By conditioning on these covariates – for example, by using a regression 

model – researchers can address these imbalances and compare the treatment and control groups on a 

more equal footing. For example, if the treatment group had students with systematically higher baseline 

test scores, we would want to adjust for these scores as we might imagine the treatment group outcomes 

would be systematically higher regardless of treatment impact. 

Differential attrition can also cause systematic differences in 𝑋 between the treatment and control 

groups. Including covariates in a regression adjustment can help redress these imbalances. Regression 

adjustment first estimates expected outcomes conditional on covariates, and then averages these across 

the shared distribution of covariates to get adjusted estimates for the treatment and control groups. 

Consider: 

𝑓𝑡(𝑥) = 𝐸[𝑌(𝑡)|𝐴(𝑡) = 0, 𝑋 = 𝑥] 

Our adjusted estimate is then: 

𝜏̃𝑅
𝑋 = 𝐸[𝑓1(𝑋)] − 𝐸[𝑓0(𝑋)] 

= 𝐸[𝐸[𝑌(1)|𝐴(1) = 0, 𝑋 = 𝑥]] − 𝐸[𝐸[𝑌(0)|𝐴(1) = 0, 𝑋 = 𝑥]] 
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Our remaining attrition bias after adjustment is then: 

𝛽𝑋 = 𝜏𝐹𝑢𝑙𝑙 − 𝜏̃𝑅
𝑋 

Importantly, regression adjustment can only correct for imbalance between the treatment and control 

groups in terms of observed covariates (and generally assumes a linear relationship between covariates 

and outcomes). If the treatment responders and control responders are different in unobserved ways 

correlated with outcomes, the evaluation will suffer from differential attrition bias. Regression 

adjustment also cannot repair any ‘generalizability attrition bias’, i.e. bias due to our evaluation sample 

not being representative of our full sample. 

 

Section 3: Data and interventions 

Our analysis relies on a unique set of linked databases in England. The key data source is an archive of 

RCTs maintained by the Education Endowment Foundation (EEF). The crucial feature of the archive 

is that it can be linked to the National Pupil Database (NPD), a census of publicly-funded schools and 

pupils that represents over 90 percent of English school children (DfE, 2015). The NPD contains 

standardized achievement measures at multiple grade levels, along with information about student 

demographic characteristics. The outcomes and covariates available for analysis are summarized below. 

            Table 1 – Overview of covariates 

Student achievement 

(national assessments) 

Grade 2 (age 7); end of “Key Stage 1” Maths, Reading 

Grade 6 (age 11); end of “Key Stage 2” Maths, Reading, Writing 

Grade 11 (age 16); end of “Key Stage 4” Maths, English, Science 

Student demographics Age Months of age 

FSM Free-school-meal status 

Female Binary indicator of gender 
                Notes: this table describes the outcomes and covariates available for our analyses. Data are described in NPD (2015). 

These data provide an unusual opportunity to study attrition bias. Because the RCT archive is linked to 

a census that contains achievement data, we can examine post-randomization outcomes data for students 

who would normally be lost to research.  

The outcomes of the original RCTs were researcher-administered achievement tests in literacy, 

mathematics and science. These outcomes were naturally subject to attrition. For each reported outcome 

we find an analogous outcome in the NPD. For example, the “Shared Maths” RCT used two maths 

modules of the Interactive Computerised Assessment System as the primary outcome (Lloyd et al., 

2015); to estimate attrition bias, we use the total marks on the Key Stage 2 maths assessment (NPD, 

2015).  

We sought NPD tests that were administered as soon as possible after RCT intervention had finished. 

For many of the RCTs, there was a short delay between the original outcome measure and the NPD 

outcome. Across our ten RCTs, the median delay was seven months.  

Finally, we note that despite the possible differences in the timing and content of the tests, there were 

strong correlations between the original evaluation outcomes and the outcomes we use in our attrition 

analyses. The mean correlation across 22 outcomes was 𝜌̅̂ =0.72. This value is attenuated by 

measurement error and would be strictly less than one even if the tests measured exactly the same 

domain at the same time. 

3.2 Interventions 

The 10 interventions we analyse represent all the available randomized trials from the EEF archive that 

met two criteria: a) the original outcome was subject to attrition; and b) pupils subsequently sat a 

standardized national achievement test.  
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The interventions were quite diverse. While the overarching purpose of all 10 interventions was to raise 

academic achievement, programs pursued this mission in a variety of ways. Some were directly focused 

at achievement outcomes and targeted at low-achieving pupils. For example, the “LIT programme” 

provided struggling readers in grade 7 with small-group instruction for 3-4 hours each week over a 

period of 8 months. Other interventions were less direct. “Act, Sing, Play”, for example, sought to raise 

achievement of whole classes by running music workshops for children in grade 2. There was also 

diversity in the ages of the pupils who participated in the 10 interventions, ranging from 6 to 15 years. 

Table 2 summarizes the interventions. 

 Table 2 – Summary of interventions 

Intervention Brief description of intervention Pupils Attrition† Outcomes (ES‡) Reference 

Act, Sing, Play Music and drama workshops, in groups of 

10, for students in grade 2, once a week for 

32 weeks 

894 7.8 Maths (0.00𝜎) 

English (0.03𝜎) 

Haywood et 

al. (2015) 

Changing 

Mindsets 

(INSET)  

Professional development course for 

primary school teachers in how to develop 

Growth Mindset in pupils 

1,035 10.8 Maths (0.01𝜎) 

English (-0.11𝜎) 

 

Rienzo et 

al. (2015) 

Changing 

Mindsets 

(Pupil) 

6-week course of mentoring and workshops 

for grade 5 students, with a focus on 

developing pupils’ growth mindset 

195 8.2 Maths (0.10𝜎) 

English (0.18𝜎) 

Rienzo et 

al. (2015) 

Dialogic 

Teaching 

Grade 5 teachers were trained in techniques 

to encourage dialogue, argument and oral 

explanation during class time 

4,918 21.4 Maths (0.09𝜎) 

English (0.15𝜎) 

Jay et al. 

(2017) 

LIT 

programme 

Targeted literacy intervention for 

struggling readers in grade 7 using 

‘reciprocal teaching’, for 3-4 hours per 

week for 8 months. 

5,286 19.0 English (0.09𝜎) Crawford & 

Skipp 

(2014) 

Mind the Gap Teacher training and parent workshops, 

over a 5 week period, to help grade 4 

students be more ‘meta-cognitive’. 

1,496 60.1 Maths and 

Reading (-0.14𝜎) 

 

Dorsett et 

al. (2014) 

ReflectEd Grade 5 pupils have weekly lessons, over a 

6 month period, focused on strategies to 

monitor/manage their own learning 

1,843 15.4 Maths (0.30𝜎)  

Reading (-0.15𝜎) 

Motteram 

et al. (2016) 

Shared Maths Cross-age peer math tutoring: older pupils 

(grade 6) work with younger ones (grade 4) 

for 20 mins per week for 2 years. 

3,119 14.1 Maths (0.02𝜎) 
Reading (§) 

Lloyd et al. 

(2015) 

Talk of  

the Town 

Whole-school intervention to help support 

the development of children’s speech, 

language and communication. 

1,512 14.8 Reading (-0.03𝜎) 
Maths (§) 

Thurston et 

al. (2016) 

Texting 

Parents 

Parents of secondary school pupils sent text 

messages about homework, upcoming tests 

etc., over 11 months 

5,026 14.4 English (0.03𝜎) 
Maths (0.07𝜎) 
Science (-0.01𝜎) 

Miller et al. 

(2016) 

Notes: this table summarizes the 10 RCTs analysed in this paper; n=number of pupils, at randomization, with valid pupil identifiers in the 

National Pupil Database. †Pupil level attrition rate. ‡Effect size. §In Shared Maths, reading results were not reported due to missing data; for 

Talk of the Town, KS2 maths was a tertiary outcome, not reported in the original trial. 

3.3 Attrition in the RCTs 

Attrition probability varied across studies and treatment arms, with a mean rate of 19% (see Figure 2). 

This is typical of a broader set of 79 education RCTs in the UK, funded by the EEF, which also had a 

mean attrition rate of 19% (Demack et al., forthcoming).  

An examination of the 10 original evaluation reports reveals that attrition was a prominent concern in 

the minds of the researchers. Each of the RCTs include a ‘padlock rating’, provided by EEF peer 

reviewers. This is intended as a measure of overall study quality. These ratings are based on five criteria: 

design, power, attrition, balance, and other threats to validity. The lowest score across these criteria 

defines the final rating. In five out of the 10 evaluations attrition was cited as the limiting factor. Two 

further trials listed ‘imbalance’ as the limiting factor, with the authors in both cases noting the role of 

differential attrition in creating imbalance. It is worth re-iterating that these 10 studies were not chosen 
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because they were disproportionately affected by attrition. Rather, the prominence of attrition as a 

concern is a stark reminder that, from the point of view of researchers, attrition is arguably the biggest 

threat to generating unbiased experimental results (Deke & Chiang, 2017; Greenberg & Barnow, 2014). 

Figure 2 – probability of attrition in RCTs 

 
Notes: This figure summarizes the probability of student attrition across the 10 RCTs analysed in this paper. The left panel shows the raw 
rates of attrition in the treatment (blue) and control (red) arms. The right panel illustrates the difference between the rates of treatment attrition 
and control attrition. 

Section 4: Estimates of Attrition Bias 

4.1 Estimating Attrition Bias 

Our definition of attrition bias lends itself to a simple estimation procedure. Consider Model 1, in which 

𝑌𝑖𝑗𝑘𝑤 is the outcome that student 𝑖 in school 𝑗 achieves in intervention 𝑤 for outcome 𝑘, and 𝑇𝑖𝑗 is a 

binary treatment indicator 

𝑌𝑖𝑗𝑘𝑤 = 𝛼𝑗 + 𝜏𝑇𝑖𝑗 + 𝑒𝑖𝑗             (𝑀𝑜𝑑𝑒𝑙 1) 

𝛼𝑗~𝑁(𝛼0, 𝜎𝛼
2)                                

𝑒𝑖𝑗~𝑁(0, 𝜎
2)          

For each intervention and outcome, we fit this model to two samples: the “responder sample” (students 

who provided data for the initial evaluation) and the “full sample” (all units, with valid pupil identifiers, 

who were recorded as being randomized). Note that in Model 1 the SATE estimand depends on the 

sample used in fitting the model. For example, when we fit Model 1 using the full evaluation sample, 𝜏 

is defined as 𝜏𝐹𝑈𝐿𝐿 . As such, generating an estimate of attrition bias for a particular study-outcome pair 

is a straightforward three step process: 

(i) Fit Model 1 only using units from the ‘responder’ sample (all 𝑖 s.t. 𝐴𝑖 = 0). As we are using 

the responder sample, the estimate of 𝜏 will be 𝜏̂𝑅  

(ii) Refit Model 1 using the full sample (𝑎𝑙𝑙 𝑖). Here, the estimate of 𝜏 will be 𝜏̂𝐹𝑈𝐿𝐿  

(iii) Take the difference: 𝛽̂ = 𝜏̂𝐹𝑈𝐿𝐿 − 𝜏̂𝑅 

4.2 Attrition bias after covariate adjustment 

𝛽𝑋 measures attrition bias after using a linear model to condition on observed covariates 𝑋. 

Conditioning on X using a model aims to address any imbalance in observed characteristics due to 

attrition (or chance treatment assignment). Estimation of 𝛽𝑋 involves the same three-step process as 

estimation of 𝛽. The only change from Model 1 is the inclusion of covariates in the estimation model, 

represented by 𝑿𝒊𝒋:  

𝑌𝑖𝑗𝑘𝑤 = 𝛼𝑗 + 𝜹𝑿𝒊𝒋 + 𝜏𝑇𝑖𝑗 + 𝑒𝑖𝑗             (𝑀𝑜𝑑𝑒𝑙 2) 

𝛼𝑗~𝑁(𝛼0, 𝜎𝛼
2)                                 

𝑒𝑖𝑗~𝑁(0, 𝜎
2)              

𝑃𝑡 = 𝑃(𝐴 1 = 1)
𝑃 = 𝑃(𝐴 0 = 1)

Mind the gap

Dialogic teaching

Talk of the town

Texting parents

Reflected

LIT programme

Shared maths

Changing mindset (teacher)

Act, sing, play

Changing mindset (pupil)

Probability of attrition 
P(A=1)

𝑃𝑡 –𝑃 



9 
 

There are two reasons to examine attrition bias in the context of covariate-adjusted impact estimates. 

First, we are interested in the magnitude of attrition bias in practice. As applied researchers generally 

adjust for covariate imbalance – and all 10 evaluations considered here adjusted for covariates – we 

follow this convention. Second, by estimating attrition bias both with and without covariate adjustment, 

we are able to examine the extent to which condition on covariates repairs attrition bias. As a final note, 

estimates of attrition bias may also benefit from precision gains if variation in outcomes is captured by 

covariates. This could improve our ability to detect attrition bias even when there is no differential 

attrition. 

4.3 Estimates of 𝜷 and 𝜷𝑿 

Figure 3 presents initial estimates of 𝛽 and 𝛽𝑋. The plot also presents 95% confidence intervals for 𝛽̂𝑋. 
These uncertainty estimates are based on a set of simulations described in Appendix A. We use 

simulation-based inference rather than conventional standard errors to allow for the dependence 

structure of 𝛽𝑋 across studies and outcomes. 

There are two things to note about Figure 3. First, it appears as though conditioning on covariates lessens 

attrition bias. The estimates of 𝛽̂𝑋 tend to be closer to zero than the 𝛽̂ estimates.  Second, 20 out of the 

22 estimates of 𝛽̂𝑋 have confidence intervals that include zero.  

Next, we analyse the distribution of attrition bias across interventions and outcomes. The boxplots at 

the bottom of Figure 3 are a useful starting point in this endeavour. However, these data are over-

dispersed due to measurement error. This may create a misleading impression about the typical 

magnitude of attrition bias. To see why the distributions underlying the boxplots are over-dispersed, 

consider an attrition mechanism 𝐴𝑛𝑢𝑙𝑙 that is completely random: 𝐴𝑛𝑢𝑙𝑙 ⊥ 𝑌(1), 𝑌(0), 𝑋. If this 

mechanism were responsible for deleting data from each of our 10 evaluation samples, estimates of 

attrition bias would be non-zero even though no bias had been introduced. In other words, the raw 

estimates of bias presented in the boxplots include both underlying attrition bias and ‘attrition sampling 

variation’ – that is, uncertainty about which units will leave the study. 

We account for this error using tools from meta-analysis. This approach addresses two overlapping 

goals: to present estimated distributions for 𝛽 and 𝛽𝑋 that are not over-dispersed due to sampling 

variation, and to estimate the typical value of underlying attrition bias for our setting. The aim in both 

cases is to help education researchers and funders understand the typical magnitude of attrition bias in 

typical RCTs. 

Observed attrition bias estimates 𝛽̂𝑘𝑤 are assumed to be made up of several components: 

𝛽̂𝑘𝑤|𝛽𝑘𝑤~𝑁(𝛽𝑘𝑤, 𝜎𝑘𝑤
2 ) 

𝛽𝑘𝑤~𝑁(𝜈, 𝜂
2) 

 Where: 

(i) 𝜈 = the mean attrition bias across all interventions and outcomes 

(ii) 𝛽𝑘𝑤 = the underlying attrition bias for outcome 𝑘 in intervention 𝑤. This has a variance of 

𝜂2 reflecting the fact that not all interventions will have the same attrition bias. 𝛽𝑘𝑤 could 

change due to context, the nature of the treatment, the outcome, and so on. 

(iii) 𝛽̂𝑘𝑤 = observed bias. This deviates from underlying bias 𝛽𝑘𝑤 with a variance of 𝜎𝑘𝑤
2 , which 

is largely determined by the level of attrition. 

Appendix B provides details of our approach to estimating these parameters, which draws heavily on 

random effects meta-analysis (Higgins et al., 2009). For each intervention-outcome pair we calculate a 

constrained empirical Bayes’ estimate of attrition bias, 𝛽̃𝑘𝑤 (Weiss et al., 2017). The estimated 

distributions of 𝛽̃ and 𝛽̃𝑋 are presented in Figure 4. 
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      Figure 3 – Estimates of attrition bias, before conditioning (𝛽̂) and after (𝛽̂𝑋) 

 
Note: this figure represents initial point estimates of attrition bias before conditioning on covariates (𝛽̂) and afterwards (𝛽̂𝑋). 

Estimates of 𝛽̂𝑋 have 95% CIs, derived from simulations described in Appendix A. 

The top panel of Figure 4 represents our best guess at the distribution of attrition bias in cases where 

researchers do not adjust for observed differences between treated and control units. The mean of the 

estimated 𝛽̃ distribution is 𝜈̂ = −0.013𝜎, with mean absolute value of 0.026𝜎. Where we control for 

covariates, including a pre-test, the estimated distribution of 𝛽̃𝑋 has a mean of 𝜈̂ = −0.004𝜎, and a 

mean absolute value of 0.015𝜎. No values of 𝛽̃𝑋 have a magnitude greater than 0.034𝜎. This suggests 

that, in practice, the typical magnitude of attrition bias is small, particularly when researchers have 

access to predicative covariates. 

                     Figure 4 – Final estimates of underlying attrition bias (𝛽̃, 𝛽̃𝑋) 

 
Notes: the top panel shows estimates of constrained empirical Bayes estimates of 𝛽̃ for 10 studies and 22 outcomes. The bottom panel is the 

equivalent plot after conditioning on covariates 𝛽̃𝑋. The estimated mean is shown with a grey dotted line. 

𝛽̂𝑋

Attrition Bias
(Effect Size Units)

Maths

Reading

Science

Writing

𝛽̂

Mind the gap

Dialogic teaching

Talk of the town

Texting parents

Reflected

LIT programme

Shared maths

Changing mindset (teacher)

Act, sing, play

Changing mindset (pupil)

x

English

Maths

Science

Writing

Reading

English

Attrition Bias
(Effect Size Units)

𝛽

𝛽𝑋



11 
 

4.4 Contextualising attrition bias 

To put the magnitude of these attrition bias estimates into context, we offer three points of reference. 

First, note that the What Works Clearinghouse set a threshold for problematic bias at 0.05𝜎 (WWC, 

2014). The EEF takes a similar position, and views 0.05𝜎 as a threshold beyond which bias becomes a 

substantial concern. None of the estimates of attrition bias presented above are greater than this 

threshold – including the estimates that do not condition on covariates. 

Second, a recent meta-analysis of similar interventions found that the typical value of selection bias due 

to non-random assignment was 0.15𝜎 without covariates, and 0.03𝜎 after controlling for observable 

characteristics (Weidmann and Miratrix, forthcoming). This study used a set of 14 interventions that 

are very similar to those studied here. The findings show that, in the absence of predictive covariates, 

typical selection bias due to non-random assignment is roughly six times larger than typical attrition 

bias. When researchers have access to predictive covariates, typical selection bias is roughly twice as 

large as typical attrition bias. 

Third, we draw readers attention to initial estimates of external validity bias due to non-random 

sampling. To our knowledge such estimates only exist for one program (Reading First), and suggest 

that the mean bias due to non-randomly selected study samples is 0.1𝜎 (Bell et al., 2016). Given the 

scarcity of evidence, we draw no firm conclusions. However, if an evaluation has the policy-relevant 

goal of estimating a population average treatment effect, it is plausible that the risk of external validity 

bias overshadows internal-validity risks. In light of this, we argue that it is an urgent priority to develop 

a stronger understanding of the risk of external validity bias. 

Section 5: Decomposing and understanding attrition mechanisms 

5.1 Decomposing the elements of attrition bias 

Section 2 shows that attrition bias can be viewed as a function of four elements: the rate of attrition in 

each arm (𝑃𝑡 , 𝑃 ) and the extent to which attrition is associated with outcomes (Δ𝑡, Δ ). Here, we explore 

the estimated magnitude of Δ parameters, beginning with Δ𝑇 and Δ𝐶:  

Δ𝑇 =  𝐸[𝑌(1)|𝐴(1) = 1] − 𝐸[𝑌(1)|𝐴(1) = 0] 

Δ𝐶 =  𝐸[𝑌(0)|𝐴(1) = 1] − 𝐸[𝑌(0)|𝐴(1) = 0] 

These parameters can be estimated using a model that accounts for the clustering of students (𝑖) 
within schools (𝑗): 

𝑌𝑖𝑗 = 𝛼𝑗 + 𝛾𝐴𝑖𝑗 + 𝜆1𝑇𝑖𝑗 + 𝛿𝐴𝑖𝑗𝑇𝑖𝑗 + 𝑒𝑖𝑗          (𝑀𝑜𝑑𝑒𝑙 3) 

𝛼𝑗~𝑁(𝛼0, 𝜎𝛼
2) 

𝑒𝑖𝑗~𝑁(0, 𝜎
2) 

With this setup Δ̂𝐶 = 𝛾, and Δ̂𝑇 = 𝛾 + 𝛿. Values of Δ𝑎 closer to zero suggest that the attrition 

mechanism in treatment arm 𝑎 is less associated with outcomes.  

Because education researchers frequently have access to predictive covariates – as we do for all 10 of 

the randomized experiments in our dataset – we also consider versions of the Δ parameters that 

condition on covariates (Δ𝐶
𝑋 and Δ𝑇

𝑋). To estimate these quantities we fit Model 4, which adds covariates 

and their interactions to Model 3: 

𝑌𝑖𝑗 = 𝛼𝑗 + 𝛾2𝐴𝑖𝑗 + 𝜆2𝑇𝑖𝑗 + 𝛿2𝐴𝑖𝑗𝑇𝑗 + 𝝂𝑪𝑿𝒊𝒋 + 𝝂𝑻𝑿𝒊𝒋𝑇𝑖𝑗 + 𝑒𝑖𝑗          (𝑀𝑜𝑑𝑒𝑙 4) 

𝛼𝑗~𝑁(𝛼0, 𝜎𝛼
2)                             

𝑒𝑖𝑗~𝑁(0, 𝜎
2) 

In Model 4, Δ̂𝐶
X = 𝛾2.  The parameter Δ𝐶

𝑋 represents the mean difference in outcomes between ‘control 

responders’ and ‘control attriters’ who have the same covariate values. Δ̂𝑇
X = 𝛾2 + 𝛿2, and is the 

equivalent parameter on the treatment side. While estimates of these parameters contain useful 
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information about the nature of attrition mechanisms, our primary focus is on the distribution of the Δ 

parameters across studies and outcomes. To that end, note that the issue of over-dispersal, discussed 

above with reference to 𝛽̂ and 𝛽̂𝑋, also applies to the Δ̂ estimates. We therefore rely on the same meta-

analytic tools to model the underlying distributions of the Δ parameters.  

As an example of our modelling approach consider Δ̂𝐶,𝑘𝑤: the difference in the average outcomes 

between control attriters and control responders, for outcome 𝑘 in intervention 𝑤. We model this as 

follows: 

Δ̂𝐶,𝑘𝑤|Δ𝐶,𝑘𝑤~𝑁(Δ𝐶,𝑘𝑤, 𝜓𝑘𝑤
2 ) 

Δ𝐶,𝑘𝑤~𝑁(𝜙𝐶 , 𝜃𝐶
2) 

Where: 

(i) 𝜙𝐶 = the mean difference, across all studies, in the average outcomes of ‘control attriters’ 

and ‘control responders’. 

(ii) Δ𝐶,𝑘𝑤 = the underlying difference, for intervention 𝑤 and outcome 𝑘, between the mean 

outcome of ‘control attriters’ and ‘control responders’. This has a variance of 𝜃𝐶
2 across 

intervention-outcome pairs. 

(iii) Δ̂𝐶,𝑘𝑤 = the observed mean difference in the average outcome of ‘control attriters’ and 

‘control responders’. This has sampling variance of 𝜓𝑘𝑤
2 . 

For analyses in which we condition on covariates, equivalent parameters have an X superscript. For 

example, Δ𝑇,𝑘𝑤
𝑋  is the difference in mean outcomes for ‘treatment attriters’ and ‘treatment responders’, 

after conditioning on covariates with a linear model. 

We conduct four separate meta-analyses, one each for Δ𝐶 , Δ𝑇 , ΔC
X  and Δ𝑇

𝑋. Once again we compute a set 

of 22 constrained empirical Bayes estimates for each parameter: Δ̃𝐶 , Δ̃𝑇 , Δ̃C
X  and Δ̃𝑇

𝑋 (Weiss et al., 2017). 

The results, along with core parameter estimates from the meta-analyses, are presented in Figure 5. 

Figure 5 – Estimates of Δ̃ distributions 

 
Note: the estimation approach for the meta-analyses is described in Appendix B. 𝜙̂ represents the estimated mean of each distribution; 𝜃 is the 

estimated standard deviation. Due to the small number of interventions we could not use the estimated variance of 𝜃2 as the basis of a confidence 

interval (Higgins et al., 2009). 

 

Examination of these plots emphasizes two features of our data. First, conditioning on covariates 

substantially reduces the perniciousness of attrition mechanisms. The distributions of Δ̃𝐶
𝑋 and Δ̃𝑇

𝑋 are 

centered much closer to zero than their unadjusted counterparts. Second, it appears as though there is a 

systematic relationship between attrition and outcomes. Units who leave studies appear to have worse 

outcomes than responders, even after conditioning on covariates. This is particularly true on the 

treatment side. Almost all the estimates of Δ̃𝑇 and Δ̃𝑇
𝑋 are negative, or zero (<0.005𝜎). A similar effect 

is present on the control side, but it much less pronounced. 

Control Treatment

No 
covariates

Covariate
adjusted

Effect-size units Effect-size units

 ̃𝑪  ̃𝑻

 ̃ 
  ̃𝑻

 

𝜙̂ = -0.12 [-0.17, -0.07]

𝜃̂ = 0.08

𝜙̂ = -0.04 [-0.09, 0.01]
𝜃̂ = 0.0 

𝜙̂ = -0.21 [-0.29, -0.14]

𝜃̂ = 0.14

𝜙̂ =-0.11 [-0.16, -0.05]
𝜃̂ = 0.11
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To emphasize the potential difference between the treatment and control side, we perform a non-

parametric test of the hypothesis that the mean value of Δ̃ is the same for both arms, 𝐻0: 𝜙𝐶 = 𝜙𝑇. To 

generate a draw under the null, we permute treatment status within each study-outcome pair and 

calculate mean(Δ̃𝐶)− mean(Δ̃𝑇). We compare the observed value of mean(Δ̃𝐶)− mean(Δ̃𝑇) with 10000 

draws under the null, and find evidence against the hypothesis that the means are equivalent (p=0.01). 

We then test the analogous hypothesis for Δ̃𝑋 and similarly find that the difference between the means 

is significant (p=0.008). In both cases – with and without conditioning on covariates – attrition appears 

to be more problematic on the treatment side. 

The meta-analyses underlying Figure 5 can also be viewed as tests of two common assumptions: 

“Missing At Random” (MAR) and “Missing Completely At Random” (MCAR). Specifically, if MCAR 

holds across our studies then the distributions of Δ𝑇 and Δ𝐶 will have a mean of zero. This is clearly not 

the case. 𝜙̂𝑇 and 𝜙̂𝐶 are negative and their 95% confidence intervals do not include zero (both p-values 

are < 0.001).  

There is also some evidence that attrition mechanisms do not meet the MAR assumption. In particular, 

note that 𝜙̂𝑇
𝑋 = −0.11 and is significantly different from zero (p=0.002). The picture on the control side 

is slightly less clear. After adjusting for covariates, the mean difference between attriters and responders 

is negative (𝜙̂𝐶
𝑋 = −0.04) but not significantly different from zero (𝑝 = 0.11). Overall, however, these 

results cast substantial doubt on MAR being a plausible assumption in our context.  

We see further evidence against the MAR assumption when we examine the 22 individual study-

outcome pairs in our data. For each pair we use a likelihood ratio test to examine the hypothesis that 

𝛿 = 𝛾 = 0. When applied to Model 4, this hypothesis test is a test of MAR. After correcting for multiple 

comparisons (Hochberg, 1988) we find 5 out of 22 reject MAR. Full results of these hypothesis tests 

are presented in Appendix C. In sum, these findings reinforce the conclusions of the distributional 

analyses and suggest that, in our context, researchers cannot safely assume that attrition mechanisms 

will meet the MAR assumption. 

5.2 What predicts pernicious attrition? 

Are there situations in which problematic attrition mechanisms are more likely? Here we examine three 

possible predictors of non-random attrition. First: school grade. Seven of the 10 trials focused on 

outcomes from grade six (age 11-12) which limits our ability to draw conclusions about the effect of 

grade on attrition mechanisms. However, we note that two of the trials with the largest values of Δ̃𝑋 

were in grade 11 (see Figure 6). Moreover, examination of the MAR tests at the study-outcome level 

shows that four of the five rejections of the MAR hypothesis came from the two trials with outcomes 

at grade 11. As we only have two cases, we are tentative in drawing conclusions. However, we suggest 

that researchers working with outcomes for later grades should be especially wary of attrition. 

                              Figure 6 – |Δ̃𝑋| by grade 

 
Notes: estimates of |Δ̃𝑋| (the magnitude of the association between attrition and outcomes, conditional on covariates) by grade. Each panel 

shows results from 10 RCTs and 22 outcomes. The left panel presents estimates from control students, the right panel from treated students. 

 

Second, we examine whether there is any association between the size of a study and the nature of 

attrition. We find a positive association between |Δ̃𝑋| and trial size: 

Control|Δ̃𝐶
𝑋| Treatment |Δ̃𝑇

𝑋|
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        Figure 7 – |Δ̃𝑋| by number of pupils 

  
Notes: |Δ̃𝑋| is the magnitude of the association between attrition and outcomes, conditional on covariates. Each panel shows results from 10 

RCTs and 22 outcomes. The left panel presents estimates from the control side, the right panel from the treatment side. 95% confidence 

intervals for the predicted linear relationship are based on bootstrapped samples. 
 

A simple regression analysis found that an increase of 1,000 students in a trial arm was associated with 

an increase of 0.04𝜎 in Δ̃𝑋 on both the control and treatment side. The association is statistically 

different from zero on the control size (p<0.001) but not on the treatment size (p=0.102; see Appendix 

D for details). This suggests that there may be a positive association between bigger trials and bias-

inducing attrition mechanisms. 

Finally, we tested the hypothesis that the rate of attrition is associated with its perniciousness. We find 

no evidence that attrition mechanisms are more problematic in cases where attrition is high. The 

correlation between 𝑃𝑎 and Δ̃𝑎 was not significantly different from zero for treated or control arms. 

Section 6: recommendations for applied researchers 

Evidence presented in section 5 suggests that, in our context, outcome data cannot safely be assumed 

to be Missing At Random, let alone Missing Completely At Random. We argue that researchers should 

respond in three ways. First, adjust for covariate differences in estimating treatment effects. This is 

already common practice, so we do not discuss it further. Second, incorporate ‘attrition bias uncertainty’ 

into inferences. Third, perform sensitivity analyses to see whether core findings are robust to the types 

of attrition mechanisms we observe in practice. This section describes the latter two recommendations, 

culminating in a worked example using the evaluation of REACH program (Sibieta, 2016). 

6.1 Incorporating attrition bias into uncertainty estimates 

The threat of attrition bias is a source of uncertainty in estimating the Sample Average Treatment Effect 

(SATE) on the full sample (𝜏𝐹𝑈𝐿𝐿). This uncertainty should be incorporated into inferences. There are 

multiple possible approaches, including a fully Bayesian analysis in which the attrition mechanism in 

each treatment arm is explicitly modelled. For education researchers pursuing this strategy, the results 

we report here represent a strong starting point for priors. However, in keeping with a frequentist 

framework, we propose augmenting conventional standard errors by the expected magnitude of 

attrition. The result is an inflated “rule of thumb standard error” for the SATE. This adjustment can be 

done on any study, given an initial standard error and attrition rates for treated and control units. 

The total error in our estimate is the sum of estimation error and any attrition bias induced by attrition 

and our estimation process: 

𝜏̂̃𝑅 = 𝜏𝐹𝑈𝐿𝐿 + 𝛽 + 𝑒 

In the above, e is our estimation error when we take 𝜏̂̃𝑅 as an estimate of 𝜏̃𝑅; we assume it is unbiased 

with 𝐸[ 𝜏̂̃𝑅] = 𝜏̃𝑅. To include uncertainty from attrition, we further assume that attrition bias is an 

unknown random variable independent from estimation error (i.e., we make the simplifying assumption 

that 𝑐𝑜𝑣(𝑒, 𝛽) = 0). This gives: 

Number of pupils in each arm (000s)

Control|Δ̃𝐶
𝑋| Treatment |Δ̃𝑇

𝑋|
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𝐸 [(𝜏̂̃𝑅 − 𝜏𝐹𝑈𝐿𝐿)
2
] = 𝐸[𝛽2] + 𝑣𝑎𝑟(𝑒) 

We write E[𝛽2] because attrition is not necessarily 0 centered.  The above is a decomposition of the 

overall error. The second term is the typical standard error (squared): 

𝑒~𝑁(0, 𝑆𝐸2). 

We can obtain a working value for 𝐸[𝛽2], tailored to a new study 𝑠, based on observed levels of attrition 

in the treatment and control arms of 𝑠. Using (6) we have the following expression for 𝜂2, the variance 

of attrition bias across outcomes: 

𝜂2 = 𝐸[𝛽2] = 𝐸[(𝑃𝑇Δ𝑇 − 𝑃𝐶Δ𝐶)
2] 

= 𝑃𝑇
2𝐸[ΔT

2 ] + 𝑃𝐶
2𝐸[ΔC

2 ]  −  2𝑃𝑇𝑃𝐶𝐸[ΔTΔC] 

To get the above, we treat 𝑃𝑇 and 𝑃𝐶 as constants, as they are directly observed. We have relatively 

little empirical information about 𝐸[Δ𝑇Δ𝐶]. The information we do have suggests that this term is 

positive, because estimates of both Δ𝑇 and Δ𝐶 tend to be less than zero (see Appendix E for discussion). 

That said, we argue for dropping this cross term. This is conservative if Δ𝑇 and Δ𝐶 have the same sign. 

For study 𝑠 this gives us: 

𝜂𝑠
2 = 𝑃T,s

2 E[ΔT
2 ] + 𝑃C,s

2 E[ΔC
2 ] 

𝜂𝑠
2 can then be estimated based on observed attrition (𝑃𝑇,𝑠, 𝑃𝐶,𝑠) and estimates of the squared magnitude 

of Δ𝐶 and Δ𝑇: 

𝜂̂𝑠
2 = 𝑃𝑇,𝑠

2 Δ𝑇
2̅̅̅̅  + 𝑃𝐶,𝑠

2 Δ𝐶
2̅̅̅̅  

Where Δ𝑎
2̅̅̅̅ = 𝜃𝑎

2 + 𝜙̂𝑎
2 for arm 𝑎. Estimates for these parameters – with and without conditioning on 

covariates – are presented in Table 3. 

This, in turn, leads to a revised uncertainty estimate, tailored to the observed level of attrition: 

𝑆𝐸̂𝑟𝑒𝑣𝑖𝑠𝑒𝑑,𝑠 = √𝜂̂𝑠
2 + 𝑆𝐸̂𝑠

2 

                             Table 3 – Summary of attrition parameters 

  Δ2̅̅ ̅  
(𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒2) 

𝜃2̂ 
(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) 

𝜙̂ 
(𝑚𝑒𝑎𝑛) 

No 

covariates 

Control 0.021 0.007 -0.122 

Treatment 0.065 0.021 -0.210 

Covariate 

adjusted 

Control 0.008 0.006 -0.040 

Treatment 0.023 0.011 -0.107 
Notes: this table represents estimates of important attrition bias parameters from our sample of 10 RCTs and 22 outcomes. “No covariates” 
indicates that attrition bias parameters have been estimated without controlling for any observed characteristics. “Covariate adjusted” estimates 
condition on observed characteristics. For model equations and parameter definitions, see Section 5.1. 

Our attrition-adjusted errors will be strictly larger than the unadjusted standard errors; we have forced 

any systematic bias into a variance term which protects us from making a priori assumptions about the 

direction of the bias. Our standard error should now be interpreted as an estimate of the magnitude of 

our overall error (it is in fact closer to an estimate of the expected RMSE); corresponding confidence 

intervals take the attrition bias as an unknown, zero-centered variable with a magnitude that depends 

on proportion of units attrited and evidence from prior studies about the link between attrition and 

outcomes (for an argument to interpret SEs as an estimate of error in this way, see Sundberg (2003)). 

Studies with lower rates of attrition will have smaller adjustments. This adjusted standard error does 

not take into account any “cancelling out” effect we might see due to similar attrition in both arms of a 

study; we view not doing so as a more cautious, conservative approach. 
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6.2 Sensitivity analyses, based on observed attrition mechanisms 

Randomized experiments frequently include sensitivity analyses to assess whether results are robust to 

attrition. This is often done in terms of missing-data imputation. However, given the possibility that 

MAR is violated, there is a strong argument for going further, and exploring the potential influence of 

attrition bias due to unobserved characteristics.  

This in itself is not a novel idea and various approaches to bounding unobserved biases have been 

proposed (e.g. Manski, 1990). The difficulty is that sensitivity analyses often yield very wide ranges 

that far exceed typical effect sizes in the field and are inconsistent with informed prior expectations. To 

help resolve this issue, we argue that researchers should ground their sensitivity analyses in estimates 

of how bias-inducing attrition mechanisms tend to be in practice.  

To do this, consider 𝜏̂∗, the estimated SATE, conditional on values for Δ𝐶 = Δ𝐶
∗  and Δ𝑇 = Δ𝑇

∗ : 

𝜏̂∗ = 𝜏̂𝑅 + 𝑃𝑇Δ𝑇
∗ + 𝑃𝐶Δ𝐶

∗   (7) 

                                     =  𝜏̂𝑅 + 𝑃𝑇(Δ𝑇
∗ − Δ𝐶

∗ ) + Δ𝐶
∗ (𝑃𝑇 − 𝑃𝐶)     ( ) 

Nearly all randomized experiments report both impact estimates (𝜏̂𝑅) and attrition rates (𝑃𝑇 and 𝑃𝐶). 
This means that (7) can be widely used to assess how sensitive findings are to attrition. Meanwhile, (8) 

shows that the sensitivity of an impact estimate depends on two factors: differential attrition 

mechanisms (Δ𝑇 − Δ𝐶) and differential attrition rates (𝑃𝑇 − 𝑃𝐶). For any given study, the differential 

attrition rate is known. Consequently, we recommend that researchers take 𝑃𝑇 and 𝑃𝐶 as given and focus 

their sensitivity analyses on the potential influence of differential attrition mechanisms (Δ𝑇 − Δ𝐶). 

One way to do this is to generate a simple sensitivity plot with 𝜏∗ on the y-axis and the differential 

attrition mechanism on the x-axis (either Δ𝑇
∗ − Δ𝐶

∗  or Δ𝐶
∗ − Δ𝑇

∗ , depending on whether 𝜏̂ is positive or 

negative). We suggest that the x-axis span the range from “no differential attrition” to the “worst 

observed case”.  

Under “no differential attrition”, Δ𝑇
∗ = Δ𝐶

∗ . The worst-case estimates of Δ∗ will depend on whether the 

finding is positive or negative. Consider the case of a positive impact estimate: 𝜏̂𝑅 > 0. This finding 

will be undermined by positive values of Δ𝐶
∗ − Δ𝑇

∗ . A sufficiently large value of Δ𝐶
∗ − Δ𝑇

∗  will send 𝜏∗ 
zero. To find the “worst observed case” we refer researchers to Table 4, which summarizes our 22 

estimates of Δ̃𝐶 , Δ̃𝑇 , Δ̃𝐶
𝑋 and Δ̃𝑇

𝑋. Across our set of 22 outcomes, the worst observed case of attrition for 

a positive finding is max(Δ𝐶 − Δ𝑇) = 0.350. In the case when we control for covariates this value is 

max(Δ̃𝐶
𝑋 − Δ̃𝐶

𝑋) =0.284. Last, to generate the sensitivity analysis, researchers need to select a value of 

Δ𝐶
∗  (or Δ∗𝐶

𝑋). As a default, we recommend using the median observed value (-0.033). The choice of Δ𝐶
∗  

is unlikely to be consequential relative to the impact of differential attrition mechanism (Δ𝐶 − Δ𝑇). 
However, researchers who are interested in a more comprehensive sensitivity analysis can simply 

calculate 𝜏∗across a two dimensional grid of Δ𝑇
∗  and Δ𝐶

∗  values. Of course, researchers could choose any 

parameters they believe are appropriate to include in this grid. But, in keeping with our broader 

recommendations, we suggest that these values be grounded by attrition mechanisms that have been 

observed in practice. For example, we suggest that the grid be bounded by the maxima and minima of 

the relevant Δ parameters reported in Table 4. 

6.3 Example: REACH reading intervention 

To make these ideas more concrete, we present example analyses using the evaluation of the REACH 

reading intervention (Sibieta, 2016). This is a randomized experiment in the EEF archive for which the 

threat of attrition bias is unknown. In this case, the control units were given the treatment straight after 

the trial concluded as part of a ‘wait-list’ design. This makes it impossible to use our approach to 

estimate attrition bias.  
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Table 4 – Summary values of Δ parameters 

   No covariates Covariates 

Outcome Project Grade Δ̃𝐶  Δ̃𝑇  Δ̃C − Δ̃T Δ̃𝐶
𝑋 Δ̃𝑇

𝑋 Δ̃𝐶
𝑋 − Δ̃𝑇

𝑋 

Reading asp 2 -0.091 -0.183 0.092 -0.048 -0.102 0.054 

Maths asp 2 -0.027 -0.110 0.083 0.049 -0.045 0.093 

Reading cmi 6 -0.101 -0.290 0.189 0.009 -0.140 0.149 

Writing cmi 6 -0.195 -0.327 0.131 -0.066 -0.146 0.079 

Maths cmi 6 -0.051 -0.153 0.102 0.079 -0.024 0.103 

Reading cmp 6 -0.125 -0.086 -0.038 -0.011 -0.031 0.020 

Writing cmp 6 -0.157 -0.062 -0.095 -0.069 0.002 -0.071 

Maths cmp 6 -0.145 -0.049 -0.096 -0.045 0.001 -0.047 

Reading dt 6 -0.106 -0.094 -0.013 0.007 -0.008 0.014 

Maths dt 6 -0.266 -0.189 -0.077 -0.125 -0.076 -0.049 

Maths mtg 6 -0.074 -0.277 0.204 0.046 -0.238 0.284 

Reading mtg 6 -0.070 -0.118 0.048 0.034 -0.091 0.125 

Maths ref 6 -0.120 -0.286 0.166 -0.068 -0.183 0.115 

Reading ref 6 -0.010 -0.160 0.151 0.081 -0.005 0.086 

Maths sm 6 -0.139 -0.467 0.328 -0.029 -0.230 0.202 

Reading sm 6 -0.128 -0.347 0.219 -0.028 -0.090 0.063 

Reading tott 6 -0.102 -0.267 0.165 -0.037 -0.181 0.145 

Maths tott 6 -0.089 -0.104 0.015 -0.024 0.003 -0.027 

English lit 11 0.023 -0.213 0.236 -0.112 -0.175 0.064 

Science tp 11 -0.263 -0.613 0.350 -0.175 -0.434 0.259 

Maths tp 11 -0.140 -0.227 0.086 -0.146 -0.115 -0.031 

English tp 11 -0.302 0.000 -0.301 -0.209 -0.046 -0.163 

 Min -0.302 -0.613 -0.301 -0.209 -0.434 -0.163 

 Median -0.113 -0.186 0.097 -0.033 -0.091 0.072 

 Max 0.023 0.000 0.350 0.081 0.003 0.284 

Notes: table presents all Δ values, along with their minimums, medians, and maximums, for attrition bias parameters across 10 RCTs and 22 

outcomes. “No covariates” indicates that attrition bias parameters have been estimated without controlling for any observed characteristics. 

“Covariate adjusted” estimates condition on observed characteristics. In all cells we present constrained empirical Bayes estimates of Δ 

parameters, as described in section 4.3 and Appendix A. The project acronyms are as follows: asp = Act Sing Play; cmi = Changing Mindsets 
INSET; dt = Dialogic Teaching; lit = LIT programme; mtg = Mind The Gap; ref = ReflectEd; sm = Shared Maths; tott = Talk of The Town; 
tp = Texting Parents. 

 

The evaluation reports an estimated treatment effect of 𝜏̂̃𝑅 = 0.329 with a standard error of 𝑆𝐸̂ =
0.099. Attrition in the two arms of the trial was above average: 𝑃𝑇 = 0.27  and 𝑃𝐶 = 0.323. The 

researchers had access to a pre-test, along with demographic covariates, and conditioned on these 

variables in estimating the treatment effect. As such, we focus on |Δ|̅̅ ̅̂̅
𝑇
𝑋2

 and |Δ|̅̅ ̅̂̅
𝐶
𝑋2

 which describe 

attrition mechanisms after conditioning on covariates.  

First, we extend our uncertainty estimates as follows: 

𝜂̂2 = 𝑃𝑇,𝑠
2 Δ𝑇

2̅̅̅̅ + 𝑃𝐶,𝑠
2 Δ𝐶

2̅̅̅̅  

𝜂̂2 = 0. 27 2 ⋅ 0.0232 + 0. 3232 ⋅ 0.00 2 

𝜂̂2 = 0.00256 

Then, our adjusted error estimate is: 

𝑆𝐸̂𝑟𝑒𝑣𝑖𝑠𝑒𝑑 = √𝑆𝐸̂2 + 𝜂̂2 

= 0.111 
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Generally, adjusting for attrition uncertainty will result in quite modest changes. In this case, the width 

of the uncertainty interval extended from 0.388𝜎 to 0.436𝜎. This is in keeping with empirical findings 

from section 4.4 that the magnitude of attrition bias in practice is limited, particularly after controlling 

for predictive covariates.  

Turning to sensitivity analysis, note that as 𝜏̂̃𝑅 is positive, the finding will be overturned for sufficiently 

large values of Δ𝐶
∗𝑋 − Δ𝑇

∗𝑋. Using (8), we produce the following plot: 

Figure 8 – Example sensitivity analysis for REACH 

 
Note: this figure uses reported attrition rates from the REACH trial and presents sensitivity 

analyses according to equation (8), setting Δ̃𝐶
𝑋∗ = −0.033. 

Under the “worst-observed case” (from the 22 in our sample) the estimated average treatment effect 

declines from 0.329𝜎 to 0.251𝜎. While this is a marked reduction, the point estimate remains positive 

and the 95% confidence interval does not include zero. Overall, these sensitivity results suggest that the 

core finding of the REACH evaluation – that the intervention had a positive average treatment effect – 

is quite robust to attrition bias. This is despite the fact that the RCT suffered from a rate of attrition that, 

according to the EEF rating scale, would have limited the evaluation to receiving a maximum quality 

rating of 3 out of 5. 

 

Section 7: Limitations and conclusions 

Limitations 

Our study of attrition bias has two main limitations. First, the census data are themselves subject to 

some missingness and difficulties with matching. For each RCT in the archive, we searched the National 

Pupil Database for students who were present at randomization. Across the 10 RCTs, an average of 

1.2% of randomized students couldn’t be matched to the NPD. A further 2.6% of pupils were missing 

an outcome measure, which meant they were excluded from our analysis. In total, our analysis included 

an average of 96.2% of the students who were recorded as being present at randomization. We note that 

this small level of missingness could bias our estimates of attrition bias (𝛽̃, 𝛽̃𝑋) and the nature of bias 

mechanisms (Δ̃, Δ̃𝑋). That said, we found no association between the level of missingness in the 

National Pupil Database and any of the four aforementioned sets of parameters. See Appendix F for 

details. 

Second, our analyses may not generalize easily to other settings or to more radical educational 

interventions. The set of interventions examined here are quite diverse and fairly typical of educational 

programs that are evaluated with RCTs. However, these interventions typically affected a small 

percentage of total instruction time and were relatively short-lived, generally lasting less than a year. 

No 
differential 
attrition

Worst
observed 

case

Assumed differential attrition mechanism
ΔC
∗𝑋 −ΔT

∗𝑋

𝜏̂∗
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This may be particularly relevant given the evidence we present suggesting that the relationship between 

attrition and outcomes is stronger on the treatment side than the control. One interpretation of this 

finding is that the perniciousness of attrition mechanisms could be a function of intervention intensity. 

This conjecture is something we hope to test formally in future work. More generally, we note that the 

nature of attrition bias fundamentally depends on the nature of attrition mechanisms, which may differ 

from setting to setting – e.g. from the UK to the USA, or from school to university contexts. 

Conclusion 

Overall, the analyses presented here suggest that the threat of attrition bias is limited in our context. 

While attrition is a highly salient risk, other threats – for example, external validity bias due to non-

random sampling – may be substantially more problematic in terms of generating practical, useable 

knowledge from education evaluations. 

This is not to say that attrition mechanisms can safely be treated as “missing at random” or “missing 

completely at random”. We find evidence that students who leave studies tend to perform worse than 

those who remain. This pattern is particularly pronounced for treated students. Moreover, this tendency 

persists even after conditioning on baseline achievement. That said, we re-emphasize that these 

associations do not appear to be strong enough to induce large-scale bias. 

We suggest that researchers respond to this evidence in two main ways: incorporating ‘attrition bias 

uncertainty’ into their inferences and completing sensitivity analyses using empirically-grounded 

estimates of attrition mechanisms that have been observed in practice. As more studies are added to the 

RCT archive, we intend to present a more detailed picture of attrition mechanisms, including an 

exploration of why some evaluations seem to suffer from pernicious attrition. In the meantime, it seems 

sensible to presume that students who are missing may differ in unobserved ways from those who 

remain.  
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Appendix A: Simulation-based uncertainty estimates 

To generate uncertainty estimates for attrition bias, we conduct a simulation-based procedure. We use 

a simulated procedure because of the nested nature of our data. Bias estimates from outcomes in the 

same study are highly correlated, and we wanted to capture these dependencies in our inference. 

We perform two related procedures. The first generates uncertainty estimates for 𝛽̂𝑘𝑤. Here we simulate 

a world in which attrition is completely random, i.e. a world in which the MCAR assumption is true by 

design. We condition on several dimensions: the number of pupils at randomization (N), observed 

attrition rate (𝑃), the observed treatment assignment (𝑇𝑜𝑏𝑠), and observed outcomes (𝑌𝑜𝑏𝑠). For each 

study-outcome pair, we complete the following two-step process 1000 times: 

(a) Permute the observed binary attrition indicator. We define the ‘null responder’ sample as all 

units for whom this permuted indicator is equal to zero. 

(b) Generate an estimate of 𝛽̂𝑘𝑤
𝑁𝑢𝑙𝑙 by estimating Model 1 twice: once for the full sample, once for 

the ‘null responder’ sample.  

The second procedure generates uncertainty estimates for 𝛽̂𝑘𝑤
𝑋 . Here we simulate a world in which 

attrition is determined by observed covariates 𝑋. We again condition on several dimensions: N, 𝑃𝑇 , 𝑃𝐶, 

𝑇𝑜𝑏𝑠 and 𝑌𝑜𝑏𝑠. For each study-outcome pair, we complete the following three-step process 1000 times: 

(a) Fit two propensity score models for attrition: 

(i) 𝑃𝑖(𝐴𝑖
𝑜𝑏𝑠 = 1|𝑇𝑖

𝑜𝑏𝑠 = 1) = 𝑙𝑜𝑔𝑖𝑡−1(𝜸𝒕𝑿𝒊) 

(ii) 𝑃𝑖(𝐴𝑖
𝑜𝑏𝑠 = 1|𝑇𝑖

𝑜𝑏𝑠 = 0) = 𝑙𝑜𝑔𝑖𝑡−1(𝜸𝒄𝑿𝒊) 

(b) Define a set of responders, based on each student’s observed covariate profile 𝑿𝒊.  

(i) For treated units, draw from 𝐵𝑒𝑟𝑛 (1 − 𝑃̂𝑖(𝐴𝑖
𝑜𝑏𝑠 = 1|𝑇𝑖

𝑜𝑏𝑠 = 1)). If this equals one 

then the unit is a ‘null treatment responder’. 

(ii) For control units, draw from 𝐵𝑒𝑟𝑛 (1 − 𝑃̂𝑖(𝐴𝑖
𝑜𝑏𝑠 = 1|𝑇𝑖

𝑜𝑏𝑠 = 0)). If this equals one 

then the unit is a ‘null control responder’.   

(c) Generate an estimate of 𝛽̂𝑘𝑤
𝑋,𝑛𝑢𝑙𝑙

 by estimating Model 2 twice: once for the full sample, once for 

the ‘null responder’ sample.  

Models are defined in section 4. 

 

Appendix B: Meta-analysis Details 

This appendix presents our approach to generating constrained empirical Bayes’ estimates of bias. We 

use a meta-analysis framework to model ‘attrition sampling variation’ (Weidmann and Mirtarix, 

forthcoming). Our observed bias estimates 𝛽̂𝑘𝑤 are assumed to be made up of several components: 

𝛽̂𝑘𝑤|𝛽𝑘𝑤~𝑁(𝛽𝑘𝑤, 𝜎𝑘𝑤
2 ) 

𝛽𝑘𝑤~𝑁(𝜈, 𝜂
2) 

Where: 

(a) 𝜈 = the mean attrition bias across all interventions and outcomes 

(b) 𝛽𝑘𝑤 = the true attrition bias for outcome 𝑘 in intervention 𝑤. This has a variance of 𝜂2 

reflecting the fact that attrition bias may vary due to context, the nature of the program and so 

on. 

(c) Observed bias 𝛽̂𝑘𝑤 deviates from underlying bias 𝛽𝑘𝑤 with a variance of 𝜎𝑘𝑤
2 . This sampling 

variation largely depends on how many schools participated in intervention 𝑤.  

 

To estimate the variance of bias 𝑣𝑎𝑟̂(𝛽𝑘𝑤) = 𝜂̂2, we use the method-of-moments approach from 

Higgins et al. (2009): 
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𝜂̂2 = max

{
 
 

 
 

0,
𝑄 − (𝐾 − 1)

∑𝜎̂𝑘𝑤
−2 −

∑𝜎̂𝑘𝑤
−4

∑𝜎̂𝑘𝑤
−2
}
 
 

 
 

 

Where:  

𝑄 = ∑(𝛽̂𝑘𝑤 − 𝛽̅)
2
𝜎̂𝑘𝑤
−2 

 

𝛽̅ =
∑𝛽̂𝑘𝑤 ⋅ 𝜎̂𝑘𝑤

−2

∑𝜎̂𝑘𝑤
−2  

 

Estimates of 𝜎̂𝑘𝑤
−2 come from the simulations under the null, described in Appendix A: 𝜎̂𝑘𝑤

−2 =

𝑣𝑎𝑟(𝛽̂𝑘𝑤). K is the effective sample size and is a function of the total number of outcomes, N, the mean 

number of outcomes per study (k) and the estimated intra-class correlation of 𝛽̂ (𝜌̂), as per Killip et al. 

(2004): 

𝐾 =
𝑁

1 − (𝑘 − 1) ⋅ 𝜌̂
 =

22

1 − (2.2 − 1) ⋅ 0.76
= 11.5 

 

The estimate of 𝜌̂ comes from a multilevel model in which 𝛽̂𝑘𝑤~𝑁(𝛼𝑤 , 𝜎𝑒
2), 𝛼𝑤~𝑁(𝛾0, 𝜎𝑎

2), and 𝜌̂ =
𝜎̂𝑎
2

𝜎̂𝑎
2+𝜎̂𝑒

2. Letting 𝜔̂𝑘𝑤 = (𝜎̂𝑘𝑤
2 + 𝜂̂2)

−1
, we estimate the mean attrition bias: 

𝜈̂ =
∑𝛽̂𝑘𝑤𝜔̂𝑘𝑤

∑𝜔̂𝑘𝑤
 

Next, we generate simple, parametric empirical Bayes estimates of the attrition bias for intervention 𝑤 

and outcome 𝑘: 

𝛽𝑘𝑤
∗ = 𝜆̂𝑘𝑤𝜈̂ + (1 − 𝜆̂𝑘𝑤)𝛽̂𝑘𝑤 

where 𝜆̂𝑘𝑤 =
𝜎̂𝑘𝑤
2

𝜎̂𝑘𝑤
2 +𝜂̂2

. 

While individual estimates of 𝛽𝑘𝑤
∗  minimize RMSE, an empirical distribution based on these estimates 

will underestimate the variability in bias estimates across studies and outcomes (Weiss et al., 2017). As 

such, we follow the procedure of Weiss et al. (2017, p.13) and scale our shrunken estimates so that their 

variance is equal to the estimated value of 𝜂̂2. 

We follow the same procedure for other parameters of interest: 𝛽𝑋, Δ𝑇 , Δ𝐶 , Δ𝑇
X , Δ𝐶

X. 

 

Appendix C: tests of MAR and MCAR at the study-outcome level 

This section presents the results for study-outcome level tests for two assumptions: “Missing At 

Random” (MAR) and “Missing Completely At Random” (MCAR). In both cases, we perform null-

hypothesis tests. 

For MAR, we test the null 𝐻0: 𝛿2 = 𝛾2 = 0 using a Likelihood Ratio test applied to Model 4: 

𝑌𝑖𝑗 = 𝛼𝑗 + 𝛾2𝐴𝑖𝑗 + 𝜆2𝑇𝑖𝑗 + 𝛿2𝐴𝑖𝑗𝑇𝑖𝑗 + 𝝂𝑪𝑿𝒊𝒋 + 𝝂𝑻𝑿𝒊𝒋𝑇𝑗 + 𝑒𝑖𝑗          (𝑀𝑜𝑑𝑒𝑙 4) 

𝛼𝑗~𝑁(𝛼0, 𝜎𝛼
2)                             

𝑒𝑖𝑗~𝑁(0, 𝜎
2) 
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For MCAR, we examine the null 𝐻0: 𝛿 = 𝛾 = 0, using a Likelihood Ratio test applied to Model 3: 

𝑌𝑖𝑗 = 𝛼𝑗 + 𝛾𝐴𝑖𝑗 + 𝜆1𝑇𝑖𝑗 + 𝛿𝐴𝑖𝑗𝑇𝑖𝑗 + 𝑒𝑖𝑗          (𝑀𝑜𝑑𝑒𝑙 3) 

𝛼𝑗~𝑁(𝛼0, 𝜎𝛼
2)                  

𝑒𝑖𝑗~𝑁(0, 𝜎
2) 

Variables are defined in Section 2. Table 5 provides the p-values for the tests. 

Table 5 – p-values for MCAR and MAR for individual studies 

 Missing Completely At Random (𝐻0: 𝛿 = 𝛾 = 0) Missing At Random (𝐻0: 𝛿2 = 𝛾2 = 0) 

Project Maths Reading Writing English Science Maths Reading Writing English Science 

asp 0.394 0.373 - - - 0.294 0.457 - - - 

cmi 0.686 0.074 0.004 - - 0.314 0.326 0.168 - - 

cmp 0.069 0.514 0.062 - - 0.102 0.337 0.166 - - 

dt <0.001 0.052 - - - 0.035 0.851 - - - 

lit - - - <0.001 - - - - <0.001 - 

mtg 0.024 0.337 - - - 0.018 0.441 - - - 

ref 0.058 0.396 - - - 0.137 0.468 - - - 

sm <0.001 <0.001 - - - 0.001 0.309 - - - 

tott 0.539 0.046 - - - 0.968 0.112 - - - 

tp <0.001 - - <0.001 <0.001 <0.001 - - <0.001 <0.001 

Notes: this table presents the p-values for hypothesis tests examining the Missing Completely At Random (MCAR; left panel) and 

Missing At Random (MAR; right panel) assumptions. The project acronyms are as follows: asp = Act Sing Play; cmi = Changing 

Mindsets INSET; dt = Dialogic Teaching; lit = LIT programme; mtg = Mind The Gap; ref = ReflectEd; sm = Shared Maths; tott = Talk 

of The Town; tp = Texting Parents. Cells with ‘-‘ represent a domain that wasn’t tested. Bold font indicates that individual null 

hypothesis tests were rejected at 𝛼 =0.05, after a Hochberg (1988) multiple-comparison correction.  

  

Appendix D: predictors of pernicious attrition mechanisms 

Is there evidence that larger studies tend to suffer from more problematic attrition mechanisms? 

To examine the relationship between attrition mechanisms and study size we fit the following models:  

|Δ̃𝑎𝑘𝑤
𝑋 | = 𝛿0C + δ0T𝑇𝑎 + δ1Cnaw + δ1Tnaw𝑇𝑎 + 𝜖𝑎𝑘𝑤   (H1) 

Δ̃𝑋 is is the estimated difference in mean outcomes for ‘attriters’ and ‘responders’, after conditioning 

on covariates with a linear model. 𝑎 is a treatment arm (Control or Treatment); 𝑇𝑎=1 if the arm is 

treatment, rather than control; 𝑘 is outcome domain (maths, English, science, reading, writing), w is the 

intervention. 𝑛𝑎𝑤 is the number of pupils at randomization in arm a of intervention w. 

To avoid strong distributional assumptions about the residuals, and to account for clustering of 

outcomes within studies, we perform a permutation test of the null hypothesis that the number of pupils 

has no effect on the magnitude of bias. We begin by fitting model H1 and estimating the t-statistics for 

𝛿1𝐶 and 𝛿1𝑇. Then we complete the following procedure 10,000 times: 

(a) Permute the identity of the interventions (w). Based on this permutation, generate a new 

list of sample sizes, 𝑛𝑎𝑤
′ . 

(b) Fit model H1 again, using 𝑛𝑎𝑤
′  as a predictor in place of 𝑛𝑎𝑤 

(c) Calculate the t-statistics for 𝛿1𝐶
′  and 𝛿1𝑇

′  

The p-value for the null hypothesis that 𝛿1𝐶 = 0 is p=0.0004. This is defined as the proportion of 

estimated t-statistics that are smaller in magnitude than the observed t-stat for 𝛿1𝑇 (2.22). This is 

evidence to reject the null of no association. 

We then repeat this process on the treatment side. Here the p-value for the null hypothesis of no 

association is p=0.102. We fail to reject the null at 𝛼 = 0.05. As can be seen in the right-hand panel of 

Figure 7, this is because the relationship on the treatment side depends on an outlier, which introduces 

extra uncertainty relative to the control side. 
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Is there evidence that studies with more attrition tend to suffer from more problematic attrition 

mechanisms? 

Here we examine the possibility that ‘problematic’ attrition is associated with the probability of 

attrition. A simple graphical analysis suggests that there is no association. We confirm this by estimating 

the correlations (reported in Figure 9). Even without correcting for the clustering of outcomes within 

studies, neither of the estimated correlations is significantly different from zero. 

Figure 9: Relationship between attrition probability and attrition mechanism 

 
 

Appendix E: assessing the relationship between  𝑻 and  𝑪 

In section 6, we suggest the simplifying assumption that the cross term 𝐸[Δ𝑇Δ𝐶] be set to zero. This 

assumption influences 𝜂2 and consequently the extent to which accounting for attrition bias will widen 

uncertainty estimates. For example, if Δ𝑇 and Δ𝐶 have the same sign, then the threat of attrition bias 

decreases as bias in each arm is offsetting. Equally, if Δ𝑇 and Δ𝐶 have different signs, then threat of 

bias increases along with the uncertainty due to attrition bias.  

The evidence we have about the relationship between Δ𝑇 and Δ𝐶 is presented in Figure 10 (left panel), 

along with an analogous plot for Δ𝐶
𝑋 and Δ𝑇

𝑋 (right panel). It suggests the lack of a clear association. 

While the point estimates of correlation are positive in both plots, the data fail to reject the null that 

𝜌 = 0 in both cases. Moreover, in both cases the estimated positive correlations, reported on the plots, 

are substantially shaped by an outlier. Clearly, as discussed in the main text, the estimated mean of both 

Δ𝑇 and Δ𝐶 is negative.  

                    Figure 10: Relationship between treatment attrition and control attrition 
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Appendix F: Testing the association between missingness in the national pupil database, 

and bias parameters 

Figure 11 presents the association between the proportion of randomized cases available for the 

analyses we present in this paper, and attrition parameters. We find no association. 

       Figure 11: association between attrition mechanisms and missingness from the census 
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